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Audio recordings

■ What is an audio recording ?
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Audio recordings

■ What is an audio recording ?

• It is composed of audio objects or sources… 

• …. Which are mixed together into a mixture  (i.e. the audio 

recording) which is possibly multichannel (stereo is the most 

common for music)

■ In most cases only the mixture is available which limits 

Active Listening capabilities …

piano drums guitar …. (stop)
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Applications

■ What could we do if we had the separated audio objects ?

• Active listening

• Karaoke

• Remixing 

• Music information retrieval 

− Cover song detection,  

− Music transcription (audio-to-midi, instrument recognition,…)

• …. 
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From Source separation to Informed Source 

Separation

■ How to recover the audio objects ?

• Using blind source separation 

− Separation is only done using the audio mixture.

− But…quality is often not sufficient for active listening 

applications.

− Exemple of Blind leading voice extraction [Durrieu&al.2011]…

J-L Durrieu, & al. A musically motivated mid-level representation for pitch estimation and musical audio 

source separation, IEEE Journal on Selected Topics in Signal Processing, October 2011.
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From Source separation to Informed Source 

Separation

■ How to recover the audio objects ?

• Or … relying on Informed Source Separation (ISS)

− Side information is transmitted to the separation module

− Separation is done using the mixture and the side information



AES CONFERENCE 2014  G. Richard, Télécom ParisTech

From Source separation to Informed Source 

Separation

■ How to recover the audio objects ?

• Or … relying on Informed Source Separation (ISS)

− Side information is transmitted to the separation module

− Separation is done using the mixture and the side information

− Side information can be:

– Information about the sources (e.g. MIDI scores, information 

extracted from cover versions, types of the sources, etc….)

– Directly extracted from the source signals in an encoding stage

but with an additional constraint: this information needs to be 

small
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Keynote content

■ Objective

• To provide an overview of major trends in Informed Source 
Separation (ISS)  

■ Outline of the keynote

• Introduction on Informed Source Separation

• Outline of a popular (blind) source separation approach (based on 
Non-negative Matrix Factorization).

• Overview of three trends in ISS:

− Auxiliary data-informed source separation,

− User-guided source separation,

− Coding-based  informed  source  separation 

• Conclusion
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Source separation by filtering techniques

■ General principle :

• The sources are recovered by filtering the mixtures
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A popular model for audio source separation 

: NMF

■ NMF = Non-negative Matrix Factorization  

Original spectrogram

“Activations’”

“Templates or

Atoms’”

Image from R. Hennequin
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A popular model for audio source separation 

: NMF

■ NMF does not necessarily provides a semantically 

meaningful decomposition in absence of “constraints”

Templates correspond to 

musical notes

•Templates are built from half of each note

and are less semantically meaningful

• Activations are less sparse
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A popular model for audio source separation 

: NMF

■ How the template matrix W and activation matrix H are 
obtained  [Lee&al. 1999]?

 Minimization of D(V||WH)

 Problem separately convex in W and H (for 
Euclidean and Kullback-leibler divergence)

 Resolution leads to multiplicative update rules
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A popular model for audio source separation 

: NMF

■ What types of constraints can be used ?

 Harmonicity of the templates [Raczinsky&al.2007]

 To have a decomposition in “harmonic notes”

 Spectral smoothness of the templates 
[Bertin&al.2010]

 To obtain realistic timbral notes

 Temporal continuity of activation [Virtanen2007] 

 To take into account that note activations are not 
erratic

 Sparsity of the activations [Hoyer04][Smaragdis08]

 To take into account that not too many notes are 
played in a given time



AES CONFERENCE 2014  G. Richard, Télécom ParisTech

A popular model for audio source separation 

: NMF

■ An example of model-based constraints for 

main melody separation: 

■ The model:  Audio = Voice + Music

• The voice Voice follows a source filter production 

model : Voice = Source * Filter

• Each component (Voice and Music) is represented 

by separate NMF
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An example of model constrained NMF for  

singing voice extraction 

■ Exploitation of a source/filter production model 

 Exploitation of redundancy of the accompanying music 

• Simple NMF model for background music    (          et         )

16

J-L Durrieu & al.  G, Source/Filter Model for Unsupervised Main Melody Extraction From Polyphonic 

Audio Signals, IEEE Trans. On ASLP, March 2010.

J-L Durrieu, & al. A musically motivated mid-level representation for pitch estimation and musical audio 

source separation, IEEE Journal on Selected Topics in Signal Processing, October 2011
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Informed audio source separation

■ In Informed audio Source Separation (ISS), “a priori” 

constraints may be replaced (or completed) by specific 

“information” 

• Overview of three trends in ISS:

− Auxiliary data-informed source separation,

− User-guided source separation,

− Coding-based  informed  source  separation 
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Auxiliary data-informed source separation,

User-guided source separation,

Coding-based informed source separation 

Overview of three trends in ISS
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Auxiliary data-informed source separation
“Score-informed” source separation

Figures from S. Ewert and M. Müller.  Score informed source separation.  In  Multimodal Music Processing,

Dagstuhl Follow-Ups. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2012. 

Musical Score

Midi representation of 

each track (or source) 

Use the MIDI information 

To guide audio separation

Separated tracks of 

Improved quality  
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Auxiliary data-informed source separation
“Score-informed” source separation

■ An example in the framework of NMF ( V= W . H )  

Matrix W: synthetic harmonic 

templates are defined for each 

note

Matrix H: Idealized activations 

obtained from the MIDI score

White = Zero values

Due to multiplicative update rules, zero entries at the initialization stay at zero
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Auxiliary data-informed source separation
“Score-informed” source separation

■ An example in the framework of NMF ( V= W . H )  

Matrix W: obtained after 

convergence  
Matrix H: obtained after 

convergence

Null entries at init. 

remain null
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Auxiliary data-informed source separation
“Score-informed” source separation

■ Demonstration: “left hand” – “right hand” separation  

Original recording (Chopin)

MIDI synthesis of the score

Left hand

Right hand

S. Ewert and M. Müller.  Score informed source separation.  In  Multimodal Music Processing,

Dagstuhl Follow-Ups. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2012. 
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Auxiliary data-informed source separation
“Text-informed” speech separation 

■ Extension of the source-filter model of Durrieu &al. 

• Observed signal is described as “Speech + background”

− X = S +B

• The speech S is modeled as an Excitation-Filter-Channel 

signal:

Spectrogram of S

Spectrogram of Excitation

(or source)

Spectrogram of “Filter”

(e.g. formants )

Spectrogram of channel

(e.g. microphone, reverberation,…)
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Auxiliary data-informed source separation
“Text-informed” speech separation

■ How the text is used ?

NMPCF = Non Negative Matrix partial co-factorization 

L. Le Magoarou, A. Ozerov, N. Duong Text-Informed Audio Source Separation using Nonnegative Matrix 

Partial Co-Factorization, in Proc. of MLSP, 2013
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Auxiliary data-informed source separation
“Text-informed” speech separation 

■ Each component of the speech model is represented 

by a NMF  

■ In this representation the text (which gives phonetic 

information) will directly give information on the 

matrix linked to what is said, which is:



AES CONFERENCE 2014  G. Richard, Télécom ParisTech

Auxiliary data-informed source separation
“Text-informed” speech separation : demonstration

True sources

Mixture

Example

Mixture = Speech + Music
Example produced by the user

Estimated background

Estimated speech

Proposed 
example-guided 

source separation

User
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Overview of three trends in ISS

Auxiliary data-informed source separation,

User-guided source separation,

Coding-based informed source separation 



AES CONFERENCE 2014  G. Richard, Télécom ParisTech

User-guided source separation

■ In this scenario, the user provides some partial 

information about the sources to be separated.

■ Two illustrative examples :

• Iterative source selection using a Graphical User-

Interface (GUI)

• Hummed-query for main melody extraction

• Both examples are based on Probabilistic Latent 

Component Analysis models (which are probabilistic 

models similar to NMF)
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User-guided source separation
User-selection using a GUI

■ The user paints the parts 

corresponding to the 

melody in the GUI 

■ Algorithm is re-run but 

with many zero values in 

the initial decomposition 

for the melody part

■ Several iterations are 

possible

B. Fuentes, R. Badeau et G. Richard : Blind Harmonic Adaptive Decomposition Applied to 

Supervised Source Separation. In Proc. of EUSIPCO, Bucarest, Romania, 2012.
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User-guided source separation
User-selection using a GUI

■ Demo

B. Fuentes, R. Badeau et G. Richard : Blind Harmonic Adaptive Decomposition Applied to 

Supervised Source Separation. In Proc. of EUSIPCO, Bucarest, Romania, 2012.
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User-guided source separation
Hummed melody input

■ The user hums the melody of the 

instrument track that he wish to 

separate

■ The melody produced is used as 

information for separating the 

melody in the mixture

From https://ccrma.stanford.edu/~gautham/Site/Humming.html
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User-guided source separation
Hummed melody input

■ Demonstration: Video [Smaragdis &al. 2009]

P. Smaragdis, G. Mysore, “Separation by Humming”: User Guided Sound Extraction from Monophonic 

Mixtures” in Proc.  of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics 

(WASPAA), New Paltz, NY. October 2009

https://ccrma.stanford.edu/~gautham/Site/Humming_files/smaragdis-waspaa2009.pdf
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Auxiliary data-informed source separation,

User-guided source separation,

Coding-based informed source separation 
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Coding-based  informed  source  separation

■ Here, the information is obtained directly from the sources (but the 
information needs to be well compressed to be useful)

■ Sources (or Audio objects) are known at a so-called encoding stage

• Note that informed source separation in this case shares many similarities with 
Spatial Audio Object Coding approaches (see [Ozerov&al.11] for a discussion)

[Ozerov&al.11] A. Ozerov & al. Informed source separation:  source coding meets source separation.   

In IEEE Workshop Applications of Signal Processing to Audio and Acoustics (WASPAA’11),  October 2011.
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Coding-based  informed  source  separation

■ What type of information is in the “side information”

• Could be the sources but then no point of source separation and 

huge bandwidth 

• Usually it is a partial information about the sources (obtained from 

the knowledge of the sources):

− Time frequency activations of the two predominant sources 

[Parvaix & al.]

− A compressed version of the source spectrograms (for 

example JPEG) [Liutkus & al.]

M.  Parvaix, L. Girin,  and  J.-M.  Brossier.  A  watermarking-based method for informed source separation 

of audio signals with a single sensor.  IEEE Transactions on Audio, Speech, and Language Process-

ing, 18(6):1464–1475, 2010.

A. Liutkus, J. Pinel, R. Badeau, L. Girin, and G. Richard.  Informed source separation through spectrogram 

coding and data embedding. Signal Processing, 92(8):1937 – 1949, 2012.
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Coding-based  informed  source  separation

■ What performances can be obtained ?

Demo of CISS

- Original mix (7 sources)

- Demix signals (using 7 kbit/s per source 

for side info)

For comparison: AAC for a mono signal is around 32 – 64 kbis

file:///C:/Users/grichard/Documents/Demos/Démos_ISS_CISS_Liutkus/demoCISS/index.html
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Conclusion / Perspectives

■ Conclusion: 
• Audio  source  separation  is  an  extremely  challenging  task, especially  

when  considering  real-world  stereophonic  full-tracks. 

• Blind separation techniques do exist, but their performance may be greatly 
improved by using any available information apart from the mere mixture 

• The so-called Informed Source Separation was discussed with examples 
from three major trends, namely:  

− Auxiliary data-informed source separation,

− User-guided source separation,

− Coding-based informed source separation 

■ Some perspectives
• The type of information depends on the type of source separator and the 

application but how to limit the side-information to the minimum ?

• How to exploit several informed source separators (e.g. separator fusion) 
in an optimal way ?

• How to better exploit a multitrack cover version to perform source 
separation on the original recording ?

• ….
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