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i‘ﬁml Audio recordings

m What is an audio recording ?
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=Ed vl Audio recordings

m What is an audio recording ?

Q!
* Itis composed of audio objects or sources...
@ piano & drums - guitar - (stop)
* .... Which are mixed together into a mixture (i.e. the audio

recording) which is possibly multichannel (stereo is the most
common for music)
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=Ed vl Audio recordings

m What is an audio recording ?

¢
* Itis composed of audio objects or sources...
Q} piano ‘Q) drums \Q) guitar Q) (stop)
* .... Which are mixed together into a mixture (i.e. the audio

recording) which is possibly multichannel (stereo is the most
common for music)

m In most cases only the mixture is available which limits
Active Listening capabilities ...
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=Ed vl Applications

m What could we do if we had the separated audio objects ?

« Active listening

- Karaoke

* Remixing

* Music information retrieval
— Cover song detection,

— Music transcription (audio-to-midi, instrument recognition,...)
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From Source separation to Informed Source

ﬁﬁﬁml Separation

m How to recover the audio objects ?

* Using blind source separation
— Separation is only done using the audio mixture.

— But...quality is often not sufficient for active listening
applications.

— Exemple of Blind leading voice extraction [Durrieu&al.2011]...

Singing voice

Trumpet w w w

—==4  source separation, IEEE Journal on Selected Topics in Signal Processing, October 2011.

_. J-L Durrieu, & al. A musically motivated mid-level representation for pitch estimation and musical audio
TELECOM
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From Source separation to Informed Source
— Separation
—h 1] I
m How to recover the audio objects ?
* Or ... relying on Informed Source Separation (ISS)

— Side information is transmitted to the separation module
— Separation is done using the mixture and the side information
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From Source separation to Informed Source

ﬁ%ml Separation

m How to recover the audio objects ?

* Or ... relying on Informed Source Separation (ISS)
— Side information is transmitted to the separation module
— Separation is done using the mixture and the side information

— Side information can be:
— Information about the sources (e.g. MIDI scores, information
extracted from cover versions, types of the sources, etc....)

— Directly extracted from the source signals in an encoding stage
but with an additional constraint: this information needs to be
small




=L Rl Keynote content

m Objective

« To provide an overview of major trends in Informed Source
Separation (I1SS)

m Outline of the keynote

« QOutline of a popular (blind) source separation approach (based on
Non-negative Matrix Factorization).

* Overview of three trends in ISS:
— Auxiliary data-informed source separation,
— User-guided source separation,

— Coding-based informed source separation
« Conclusion
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ﬁggml Source separation by filtering techniques

m General principle:
« The sources are recovered by filtering the mixtures

s = F x . ©
Ny —— N ¥ ARGt

SOurces  filtering technique \mixtures parameters
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A popular model for audio source separation

= . NMF
—}. 1
m NMF = Non-negative Matrix Factorization
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A popular model for audio source separation

—5.4 {1 IR

m NMF does not necessarily provides a semantically

meaningful decomposition in absence of “constraints”

Templates correspond to
musical notes

fil'Fssemeaew
Yolimrce by

*Templates are built from half of each note
and are less semantically meaningful
* Activations are less sparse
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A popular model for audio source separation
mZa - “MF

m How the template matrix W and activation matrix H are
obtained [Lee&al. 1999]?

Minimization of D(V| | WH)

Problem separately convex in W and H (for
Euclidean and Kullback-leibler divergence)

Resolution leads to multiplicative update rules

WH=YV -
] ( i
™~ w1V
— H H
< “ WT(WH)
VHT
W« W
\ ¥ (WH)HT
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A popular model for audio source separation
— e} : NMF
i
m What types of constraints can be used ?

Harmonicity of the templates [Raczinsky&al.2007]
To have a decomposition in “harmonic notes”

Spectral smoothness of the templates
[Bertin&al.2010]

To obtain realistic timbral notes

WH ~ V )i m—) Temporal continuity of activation [Virtanen2007]

To take into account that note activations are not
erratic

Sparsity of the activations [Hoyer04][Smaragdis08]

To take into account that not too many notes are
played in a given time




A popular model for audio source separation

m2EE - NvF

m An example of model-based constraints for
main melody separation:

m The model: Audio = Voice + Music

» The voice Voice follows a source filter production
model : Voice = Source * Filter

« Each component (Voice and Music) is represented
by separate NMF
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__ An example of model constrained NMF for
AT singing voice extraction
m Exploitation of a sourcef/filter production model
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m Exploitation of redundancy of the accompanying music
 Simple NMF model for background music (X" et A™ )

/77y J-L Durrieu & al. G, Source/Filter Model for Unsupervised Main Melody Extraction From Polyphonic
=i Audio Signals, IEEE Trans. On ASLP, March 2010.
J-L Durrieu, & al. A musically motivated mid-level representation for pitch estimation and musical audio
source separation, IEEE Journal on Selected Topics in Signal Processing, October 2011
ParisTech




A bl Informed audio source separation

= In Informed audio Source Separation (ISS), “a priori”
constraints may be replaced (or completed) by specific
“information”

« QOverview of three trends in ISS:
— Auxiliary data-informed source separation,
— User-guided source separation,
— Coding-based informed source separation

G. Richard, Télécom ParisTech ﬁﬁ!ml



Overview of three trends In ISS

Auxiliary data-informed source separation,
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— Auxiliary data-informed source separation
Iﬁgml “Score-informed” source separation

/ \ Musical Score

L | Midi representation of
each track (or source)

o [l

Use the MIDI information
To guide audio separation

d A N ]
H_w FHN W Separated tracks of
Improved quality

ﬁ‘ Figures from S. Ewert and M. Miller. Score informed source separation. In Multimodal Music Processing,
~  Dagstuhl Follow-Ups. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2012. TELECOM
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— Auxiliary data-informed source separation
-%gm' “Score-informed” source separation

m An example in the framework of NMF (V=W . H)

Matrix W: synthetic harmonic Matrix H: Idealized activations
templates are defined for each obtained from the MIDI score
note

- White = Zero values
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Due to multiplicative update rules, zero entries at the initialization stay at zero
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—5o4 i

Auxiliary data-informed source separation
“Score-informed” source separation

m An example in the framework of NMF (V=W . H)

Matrix W: obtained after

convergence
Y800 ¢
— - - -
. Null entries at init.
remain null
-xcco; ﬂ/
= 5004 pr—
} — -
llQSéSﬂﬁ!&lﬁS"x‘sﬁﬂTﬁ??"!"
MIDI pitch

MIDI pitch

T3

JS?J

& &
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convergence
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— Auxiliary data-informed source separation
-ﬁgm' “Score-informed” source separation

m Demonstration: “left hand” - “right hand” separation

Sostenuto.
. TRy i

 Original recording (Chopin) @ Left hand

. &  Right hand
Q. MIDI synthesis of the score

__4 S. Ewert and M. Miiller. Score informed source separation. In Multimodal Music Processing,
= Dagstuhl Follow-Ups. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2012.
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— Auxiliary data-informed source separation
-%gm' “Text-informed” speech separation

m Extension of the source-filter model of Durrieu &al.

« Observed signal is described as “Speech + background”
- X=S+B

* The speech S is modeled as an Excitation-Filter-Channel
signal:

VC)‘ —VD \_/

Q xf
Spectrogram of channel
(e.g. microphone, reverberation,...)
Spectrogram of S

Spectrogram of “Filter”
Spectrogram of Excitation (e.g. formants )

(or source)




— Auxiliary data-informed source separation
Iﬁgml “Text-informed” speech separation

m How the text is used ?

Source separation
Speech P .
hesi . Estimated
synthesizer Speech NMPCF siiich
or example model Wiener
Text —» N > _ in
Human parameter filtering
speaking estimation ' | Estimated
7 background
Audio Mix

NMPCF = Non Negative Matrix partial co-factorization

/7y L. Le Magoarou, A. Ozerov, N. Duong Text-Informed Audio Source Separation using Nonnegative Matrix

T partial Co-Factorization, in Proc. of MLSP, 2013
ParisTech




— Auxiliary data-informed source separation
-%gm' “Text-informed” speech separation

m Each component of the speech model is represented
by a NMF

Vg Vo
y 5 (W N) +W,H,

(
q
V

m In this representation the text (which gives phonetic
Information) will directly give information on the
matrix linked to what is said, which is: v

G. Richard, Télécom ParisTech ﬁﬁ!ml



S Auxiliary data-informed source separation
=3 1

“Text-informed” speech separation : demonstration

Mixture = Speech + Music
Example produced by the

user

Mixture

Proposed
example-guided

source sepa ration

Estimated speech

Estimated background

True sources
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Overview of three trends In ISS

User-guided source separation,
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et L] User-guided source separation

m In this scenario, the user provides some partial
Information about the sources to be separated.

m Two illustrative examples :

« lterative source selection using a Graphical User-
Interface (GUI)

« Hummed-query for main melody extraction

« Both examples are based on Probabilistic Latent
Component Analysis models (which are probabilistic
models similar to NMF)




__ User-guided source separation
l%ﬂﬂl User-selection using a GUI

m The user paints the parts
corresponding to the
melody in the GUI

{
0}

Note selection tool - C:\Users\fuentes\Documents\these\matlab\Eusipco_2012\summ...
T H R (e | FR 2 |PNC 3 >

_ maxMEX 403 = {
2 Py s Comgression: 068
in MEX Run Algorithm Extract Rentaize

Sparseness g 002
v.oWWe -

m Algorithm is re-run but
with many zero values in
the initial decomposition
for the melody part

m Several iterations are
possible

/=, B.Fuentes, R. Badeau et G. Richard : Blind Harmonic Adaptive Decomposition Applied to
=i Supervised Source Separation. In Proc. of EUSIPCO, Bucarest, Romania, 2012.
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__ User-guided source separation
lﬁiml User-selection using a GUI

m Demo )

/=, B.Fuentes, R. Badeau et G. Richard : Blind Harmonic Adaptive Decomposition Applied to
== Supervised Source Separation. In Proc. of EUSIPCO, Bucarest, Romania, 2012.
ParisTech
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__ . User-guided source separation
—}. 1

Hummed melody input

Sound Mixture
User input ,

m The user hums the melody of the % | ;ég E=seus
instrument track that he wish to b/ SZzZ5 ‘
separate S -

m The melody produced is used as \/
information for separating the Separation
melody in the mixture Algorithm

l

Separation result

{ —
e — == -
G - 3

. Lo 4
;)fj_[ 2
- " " —

From https://ccrma.stanford.edu/~gautham/Site/Humming.html
TELECOM
arisiec




__ User-guided source separation
i AEE Hunmed melody input

m Demonstration: Video [Smaragdis &al. 2009]

B

user-guide-shortmp4

© 7y P. Smaragdis, G. Mysore, “Separation by Humming”: User Guided Sound Extraction from Monophonic
=== Mixtures”in Proc. of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics

(WASPAA), New Paltz, NY. October 2009
-1ecn

I BT G it Takcom ParsTech g



https://ccrma.stanford.edu/~gautham/Site/Humming_files/smaragdis-waspaa2009.pdf

Coding-based informed source separation
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ﬁ%gml Coding-based informed source separation

m Here, the information is obtained directly from the sources (but the
information needs to be well compressed to be useful)

m Sources (or Audio objects) are known at a so-called encoding stage

' Encoding Stage ‘Decoding Stage
N . X ]
, ‘
1 = |_ K-channels Mix e .
M audio objects L K-channels Mix | .| '

* oy 1
X 1
1

side info L ] T ]

() K-channels Mix ‘ estimated objects

* Note that informed source separation in this case shares many similarities with
Spatial Audio Object Coding approaches (see [Ozerov&al.11] for a discussion)

/i [Ozerov&al.11] A. Ozerov & al. Informed source separation: source coding meets source separation.
~—==i |n |IEEE Workshop Applications of Signal Processing to Audio and Acoustics (WASPAA'11), October 2011.
TELECOM
arisTech




-%gm' Coding-based informed source separation
m What type of information is in the “side information”

* Could be the sources but then no point of source separation and
huge bandwidth

« Usually it is a partial information about the sources (obtained from
the knowledge of the sources):

— Time frequency activations of the two predominant sources
[Parvaix & al.]

— A compressed version of the source spectrograms (for
example JPEG) [Liutkus & al.]

/| M. Parvaix, L. Girin, and J.-M. Brossier. A watermarking-based method for informed source separation
T of audio signals with a single sensor. IEEE Transactions on Audio, Speech, and Language Process-

ing, 18(6):1464-1475, 2010.

A. Liutkus, J. Pinel, R. Badeau, L. Girin, and G. Richard. Informed source separation through spectrogram
coding and data embedding. Signal Processing, 92(8):1937 — 1949, 2012.

AES CONFERENCE 2014 G. Richard, Télécom ParisTech =
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lﬁﬂ“ Coding-based informed source separation

m What performances can be obtained ?

Demo of CISS

- Original mix (7 sources)
- Demix signals (using 7 kbit/s per source
for side info)

For comparison: AAC for a mono signal is around 32 — 64 kbis

TELECOM
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file:///C:/Users/grichard/Documents/Demos/Démos_ISS_CISS_Liutkus/demoCISS/index.html

ﬁggml Conclusion / Perspectives

m Conclusion:

« Audio source separation is an extremely challenging task, especially
when considering real-world stereophonic full-tracks.

« Blind separation techniques do exist, but their performance may be greatly
improved by using any available information apart from the mere mixture

* The so-called Informed Source Separation was discussed with examples
from three major trends, namely:

— Auxiliary data-informed source separation,
— User-guided source separation,
— Coding-based informed source separation

m Some perspectives

« The type of information depends on the type of source separator and the
application but how to limit the side-information to the minimum ?

« How to exploit several informed source separators (e.g. separator fusion)
in an optimal way ?

« How to better exploit a multitrack cover version to perform source
separation on the original recording ?

AES CONFERENCE 2014 G. Richard, Télécom ParisTech
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