

"MACHINE LISTENING: AI FOR SOUNDS AND MUSIC"

COLLOQUE IMT - L'INTELLIGENCE ARTIFICIELLE AU COEUR DES MUTATIONS INDUSTRIELLES. APRIL 4TH, 2019

Gaël RICHARD Professor, Head of the Image, Data, Signal department

A well established domain for speech ...

Goal: to extract « information » from the audio signal

Audio Sound capture: Localisation, Dereverberation, Denoising, ...

Audio Scene recognition: sound recorded in streets, in subway station, in office,)

Audio Event recognition: Speech, Music, Car noises, birds, ...

Bioacoustics: Wildlife monitoring, biodiversity, species id...

Audio Source separation

Demixing music, Singing voice extraction, source localisation,

Music recognition (or Audio ID): identifying the music recording

Music Information retrieval

Music transcription, Music similarity, Music genre recognition, Musical instrument recognition, Music recommendation, Autotagging,

Music Emotion recognition: Sad vs happy vs dance music,

TELECOM ParisTech

4

Music streaming, music recommendation Vocal separation, music separation

Bioacoustics

Music education

Music Identification, Audio Fringerprint

Karaoke, speech to rap conversion

Sound recognition,

smarthomes, smart hearables

Stratégie de marque musicale, Supervision musicale (pub.; films)

06/10/2022

SOURCE SEPARATION

06/10/2022

SOURCE SEPARATION FOR REMIXING

Use case of the ANR project

3DISON

EDISON 3D

Institut Mines-Télécom

- Time-domain mixture representation: $x_i(t) = \sum_{j=1}^{J} [a_{ij} \star s_j](t)$
- Time-frequency source representation: $s_j(t) = \mathcal{T}^{-1}(\{s_{j,fn}\}_{f,n})$

Non Negative Matrix factorization

SOURCE SEPARATION - S. LEGLAIVE (EXAMPLE REMIXED BY RADIO FRANCE)

Institut Mines-Télécom

S. Leglaive, R. Badeau, G. Richard, "Multichannel Audio Source Separation with Probabilistic Reverberation Priors", IEEE/ACM Transactions on Audio, Speech, and Language Processing, Vol. 24, no. 12, December 2016 Simon Leglaive, Roland Badeau, Gaël Richard, Separating Time-Frequency Sources from Time-Domain Convolutive Mixtures Using Non-negative Matrix Factorization. WASPAA, Oct. 2017 New Paltz, US.

06/10/2022

Audio ID = find high-level metadata from a music recording

Challenges:

Efficiency in adverse conditions (distorsion, noises,..) Scale to "Big data" (bases > millions of titles) Rapidity / Real time

Product example :

REAL-TIME AUDIO IDENTIFICATION *(FENET & AL.)*

Audio recordings recognition

- Identical
- Approximate (live vs studio)
- Real time demonstrator
- For music recommendation, second screen applications, ...

Sébastien Fenet, Yves Grenier, Gaël Richard: An Extended Audio Fingerprint Method with Capabilities for Similar Music Detection. ISMIR 2013: 569-574

TELECOM ParisTech

SOUND EVENTS AND ACOUSTIC SCENE RECOGNITION

Institut Mines-Télécor

06/10/2022

V. Bisot, R. Serizel, S. Essid, G. Richard, "Feature Learning with Matrix Factorization Applied to Acoustic Scene Classification", IEEE/ACM Transactions on Audio, Speech, and Language Processing, (2017), Special Issue on Sound Scene and Event Analysis. MIN: Telecom

From time-frequency representations to dictionary learning

Data matrix $\mathbf{V} \in \mathbb{R}^{F \times ML}$

Nonnegative matrix factorization

 $\min_{\mathbf{W},\mathbf{H}\geq 0} D(\mathbf{V}|\mathbf{W}\mathbf{H}) \text{ with } \mathbf{W} \in \mathbb{R}_{+}^{F imes K} \text{ and } \mathbf{H} \in \mathbb{R}_{+}^{K imes N}$

Dictionary learning with NMF

Nonnegative matrix factorization

$$\min_{\mathbf{W},\mathbf{H}\geq 0} D(\mathbf{V}|\mathbf{W}\mathbf{H}) \text{ with } \mathbf{W} \in \mathbb{R}_{+}^{F imes K} \text{ and } \mathbf{H} \in \mathbb{R}_{+}^{K imes N}$$

Feature extraction \rightarrow project on learned dictionary

EXAMPLE WITH DNN: ACOUSTIC SCENE RECOGNITION

V. Bisot & al., "Feature Learning with Matrix Factorization Applied to Acoustic Scene Classification", IEEE/ACM Transactions on Audio, Speech, and Language Processing, (2017),

V. Bisot & al., Leveraging deep neural networks with nonnegative representations for improved environmental sound classification IEEE International Workshop on Machine Learning for Signal Processing MLSP, Sep 2017, Tol Institut Mines-Télécom

TYPICAL PERFORMANCES OF ACOUSTIC SCENE RECOGNITION (CHALLENGE DCASE 2016)

A Mesaros & al. Detection and Classification of Acoustic Scenes and Events: Outcome of the DCASE 2016 challenge IEEE/ACM Transactions on Audio, Speech, and Language Processing 26 (2), 379-393

Institut Mines-Télécom

MUSIC INFORMATION RETRIEVAL

Major topics:

- Music transcription (Multiple F0 estimation, Beat/Downbeat detection, instrument classification, ...),
- Music recommendation
- Source separation,
- Multimodal music processing

Cue	Examples	Input
Harmony	Chord change, Cadence	
Melody	Melodic pattern, pivot notes	
Timbre	Section change, new instrument	
Rhythm	Bar-length rhythm patterns	Mututu Mututu
Bass content	Bass, Double bass and kick drum highlight downbeats	

MIR: AN EXAMPLE WITH DOWNBEAT ESTIMATION (DURAND & AL. 2017)

S Durand & al., "Robust Downbeat Tracking Using an Ensemble of Convolutional Networks", IEEE/ACM Transactions on Audio, Speech, and Language Processing, Vol 25, N°1, 2017

Examples at the output of each network

https://simondurand.github.io/dnn_audio.html

Other audio example

5 new PhD grants within project «New Frontiers in Music Information Processing (MIP-Frontiers), funded by the European Unions Horizon 2020 research and innovation program under the Marie Skodowska-Curie grant agreement No. 765068.