

# Hybrid deep learning for audio

#### Gaël RICHARD\*

#### Professor, Telecom Paris, Institut polytechnique de Paris

\*work with collaborators and in particular <u>K. Schulze-Forster</u>, C. Doire, R. Badeau



#### Content

- Context and motivation
- Towards hybrid deep learning
  - Some examples in other domains
  - Hybrid deep learning in audio
  - A specific example in unsupervised source separation
- Discussion and conclusion



### Context and motivation

- Machine learning: a growing trend towards pure "Data-driven" deep learning approaches
- High performances but some main limitations:
  - *"Knowledge" is learned (only) from data*
  - Complexity: overparametrized models (> 100 millions parameters)
  - Overconsumption regime
  - Non-interpretable/non-controllable



### Context and motivation

- Machine learning: a growing trend towards pure "Data-driven" deep learning approaches
- High performances but some main limitations:
  - *"Knowledge" is learned (only) from data*
  - Complexity: overparametrized models (> 100 millions parameters)
  - Overconsumption regime
  - Non-interpretable/non-controllable
- The main goal of my ERC project Hi-Audio :



**Main goal :** To build controllable and frugal machine listening models based on expressive generative modelling

**My approach:** to build *Hybrid deep learning models*, by **integrating our prior knowledge** about the nature of the processed data.



# Towards Hybrid deep learning ... some prior works.

• Physics-guided neural networks in remote sensing [1],





Digital communication and Image restoration [2,3]







A. Karpatne & al. "Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling," arXiv, 1710.11431, 2017.
B. Lecouat & al., "Fully Trainable and Interpretable Non-Local Sparse Models for Image Restoration.," 2020. (hal-02414291v2).
N. Shlezinger, & al., "Model-Based Deep Learning," arXiv, 2012.08405, 2020.



# Why Hybrid deep learning is interesting for audio ?

- We often have some good apriori knowledge of the sources
- We have a long history of audio signal models:
  - Audio perception: hearing model, psychoacoustics,...
  - Audio sound production: source-filter, periodic/aperiodic, physical model,...
  - Audio propagation: room acoustics, reverberation, ...
  - Audio signal models: sparsity, factorisation, time-frequency representations, decomposition models ...
- Audio requires specific deep neural networks architectures (compared to image processing)







G. Peeters, G. Richard, « Deep learning for audio» , Multi-faceted Deep Learning: Models and Data, Edited by Jenny Benois-Pineau, Akka Zemmari, Springer-Verlag, 2021 (to appear)



# Towards Hybrid deep learning ... some prior works in Audio.

- Signal models can be used as an advanced representation:
  - An example: non-negative factorization models with CNNs for audio scene classification



Principle of Non-Negative Matrix Factorization on Audio specrograms





# Towards Hybrid deep learning ... some prior works <u>in Audio</u>.

• Feature learning with NMF for audio scene classification





V. Bisot & al., "Feature Learning with Matrix Factorization Applied to Acoustic Scene Classification", ACM/IEEE Trans. on ASLP, vol. 25, no. 6, 2017 V. Bisot & al., Leveraging deep neural networks with nonnegative representations for improved environmental sound classification IEEE International Workshop on Machine Learning for Signal Processing MLSP, Sep 2017, Tokyo,



# Towards Hybrid deep learning ... some prior works in Audio.

- Deep NMF : the concept of deep unrolling
  - Classic NMF

 $\mathbf{M} pprox \mathbf{W} \mathbf{H} = \mathbf{\hat{M}}$ 

- Minimizing a distance  $D(\mathbf{M}, \hat{\mathbf{M}}) = \sum_{f=1}^{F} \sum_{n=1}^{N} d(v_{fn} | \hat{v}_{fn})$
- ..towards iterative update rules

$$\mathbf{H} \leftarrow \mathbf{H} \otimes rac{\mathbf{W}^{\mathbf{T}} \mathbf{M}}{\mathbf{W}^{\mathbf{T}}(\mathbf{W}\mathbf{H})}$$
  
 $\mathbf{W} \leftarrow \mathbf{W} \otimes rac{\mathbf{M}\mathbf{H}^{\mathbf{T}}}{(\mathbf{W}\mathbf{H})\mathbf{H}^{\mathbf{T}}}$ 







# Towards Hybrid deep learning ... some prior works in Audio

- Coupling signal processing modules with deep learning for audio synthesis
- The example of DDSP (Engel & al.)





X. Wang & al. "Neural Source-Filter Waveform Models for Statistical Parametric Speech Synthesis," in IEEE/ACM Trans. on ASLP Proc., vol. 28, 2020. J. Engel & al., "DDSP: Differentiable Digital Signal Processing," in Int. Conf. on Learning Representations (ICLR), 2020.



# Towards Hybrid deep learning

#### ... some prior works <u>in Audio</u>

• Phase retrieval from the magnitude spectrogram

Find **X** s.t.  $|X[\omega, \tau]| = A[\omega, \tau]$ 

#### • The classic Griffin-Lim Algorithm (GLA)

• Exploits spectrogram consistency (  $\mathbf{X}$  should correspond to the complex spectrogram of a time domain signal x )

Find **X** s.t. 
$$\begin{cases} |X[\omega, \tau]| = A[\omega, \tau] \\ \mathbf{X} \in Im(\mathcal{G}) \end{cases}$$

Implemented as an iterative algorithm

$$\mathbf{X}^{[m+1]} = P_{\mathcal{C}}(P_{\mathcal{A}}(\mathbf{X}^{[m]})$$
$$P_{\mathcal{A}}(\mathbf{X})[\omega,\tau] = A[\omega,\tau]) \frac{X[\omega,\tau]]}{|X[\omega,\tau]||} \quad P_{\mathcal{C}}(\mathbf{X}) = \mathcal{G}(\mathcal{G}^{\dagger}(\mathbf{X}))$$

### Deep griffin-Lim



•  $\mathcal{G}, \mathcal{G}^{\dagger}$  are respectively the STFT and ISTFT operators

Y. Masuyama, K. Yatabe, Y. Koizumi, Y. Oikawa and N. Harada, "Deep Griffin–Lim Iteration: Trainable Iterative Phase Reconstruction Using Neural Network," in IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 1, pp. 37-50, Jan. 2021,



# Towards Hybrid deep learning ... some prior works in Audio

- ....And other very recent examples for virtual analog modelling combining Ordinary Differential Equations (ODEs) and neural network to learn the derivative function....
- ... at DAFx 2022 !!

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

#### VIRTUAL ANALOG MODELING OF DISTORTION CIRCUITS USING NEURAL ORDINARY DIFFERENTIAL EQUATIONS

Jan Wilczek\*

Alec Wright and Vesa Välimäki<sup>†</sup>

WolfSound Katowice, Poland jan.wilczek@thewolfsound.com Acoustics Lab Dept. Signal Processing and Acoustics Aalto University, Espoo, Finland alec.wright@aalto.fi Emanuël A. P. Habets

International Audio Laboratories Erlangen<sup>‡</sup> Erlangen, Germany emanuel.habets @audiolabs-erlangen.de



## Towards Hybrid deep learning

... by **integrating our prior knowledge** about the nature of the processed data.

• For example in music source separation



#### Main limitations:

- Difficulty to obtain « aligned » data
- Knowledge learned (only) from data
- Complexity: overparametrized models
- Overconsumption regime
- Non-interpretable/non-controllable



### The source filter model

an efficient speech production model



 $\square$ 

Fant, G. Acoustic theory of speech production, 1960, The Hague, The Netherlands, Mouton.



# Towards Hybrid deep learning

... by **integrating our prior knowledge** about the nature of the processed data.

Knowledge about « how the sound is produced « (e.g. sound production models)



Singing voice as a source / filter model :

- source = vibration of vocal folds
- Filter = resonances of vocal/nasal cavities





# Towards Hybrid deep learning

... by **integrating our prior knowledge** about the nature of the processed data.

Knowledge about « how the sound is produced « (e.g. sound production models)



Singing voice as a source / filter model :

- source = vibration of vocal folds
- Filter = resonances of vocal/nasal cavities



#### A new paradigm

- Model is at the « core » of neural architecture
- Source separation **by synthesis** (*no interference from other sources*)
- Learning only from the polyphonic recording (no need of the true individual tracks)



# Towards Hybrid deep learning

... by **integrating our prior knowledge** about the nature of the processed data.

Preliminary work on source separation (choir singing)





K Schulze-Forster, CSJ Doire, G Richard, R Badeau <u>Unsupervised Audio Source Separation Using Differentiable</u> <u>Parametric Source Models</u>, arXiv preprint arXiv:2201.09592



## Unsupervised learning strategy

(e.g. no need of the individual source signals)







#### Parametric source models

Singing voice as a source / filter model :



- source = vibration of vocal folds
- Filter = resonances of vocal/nasal cavities





Differentiable

generative

source models

Source 1

Source 2

Source J

Multiple F0

estimation

Mixture

[1]

Mixtures

F0-to-source

assignment

DNN

Spectral

loss

fundamental frequency (F0

other synthesis parameter

Synthesized

mixture



### Parametric source models



 $0 < \omega_k < \omega_{k+1} < \pi$ 



# The Line Spectral frequencies (LSF)

- An alternative to the linear prediction coefficients  $y(n) = x(n) + e(n) = x(n) - \sum_{i=1}^{P} a_i \ x(n-i)$  $y(n) = x(n).(1 - \sum_{i=1}^{P} a_i z^{-1})$
- Use of two auxilliary polynomials





 [1] P. Kabal and R. P. Ramachandran, "The computation of line spectral frequencies using Chebyshev polynomials," IEEE/ACM Trans. on Audio, Speech, and Language Processing, vol. 34, no. 6, pp. 1419–1426, 1986.
[2] I. McLoughlin, Line spectral pairs, Signal Processing 88 (2008) 448–467



# Unsupervised learning strategy

(e.g. no need of the individual source signals)

• A multi-scale spectral loss

$$\mathcal{L}_{rec} = \sum_{c} \mathcal{L}_{c}$$

With

$$\mathcal{L}_c = \|\mathbf{M}_c - \tilde{\mathbf{M}}_c\|_1 + \|\log(\mathbf{M}_c) - \log(\tilde{\mathbf{M}}_c)\|_1$$

Where  $M_c$  and  $\tilde{M}_c$  denote the magnitude spectrograms of the input mixture and its estimate, respectively,

and c = [2048, 1024, 512, 256, 128, 64] indicates the FFT size used to compute the STFT. The frames overlap by 75%.



F0-to-source

assignment

Multiple F0

estimation

Differentiable

generative

source models



other synthesis parame

23



### Global architecture overview







### Synthesis or filtering





#### Some results

G. Richard

• Unsupervised (US)  $\approx$  supervised (SU)



(b) J = 4 sources



NMF1: S. Ewert and M. M"uller, "Using score-informed constraints for NMF- based source separation," in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing. IEEE, 2012, pp. 129–132.

NMF2: J.-L. Durrieu, B. David, and G. Richard, "A musically motivated mid- evel representation for pitch estimation and musical audio source separation," IEEE J. Selected Topics in Signal Processing, vol. 5, no. 6, pp. 1180–1191, 2011.

UNET: D. Petermann, P. Chandna, H. Cuesta, J. Bonada, and E. Gomez, "Deep learning based source separation applied to choir ensembles," in Proc. Int. Soc. Music Inf. Retrieval Conf., 2020, pp. 733–739.



### Some results

- Unsupervised (US) ≈ supervised (SU)
- Almost no drop of performances when using only 3% of the training data (US-F vs. US-S and SV-F vs. SV-S)



(b) J = 4 sources



NMF1: S. Ewert and M. M¨uller, "Using score-informed constraints for NMF- based source separation," in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing. IEEE, 2012, pp. 129–132.

NMF2: J.-L. Durrieu, B. David, and G. Richard, "A musically motivated mid- evel representation for pitch estimation and musical audio source separation," IEEE J. Selected Topics in Signal Processing, vol. 5, no. 6, pp. 1180–1191, 2011.

UNET: D. Petermann, P. Chandna, H. Cuesta, J. Bonada, and E. Gomez, "Deep learning based source separation applied to choir ensembles," In Proc. Int. Soc. Music Inf. Retrieval Conf., 2020, pp. 733–739.



### Some results

- Unsupervised (US) ≈ supervised (SU)
- Almost no drop of performances when using only 3% of the training data (US-F vs. US-S and SV-F vs. SV-S)
- ..much larger drop of performances of the supervised baseline model (Unet)



(b) J = 4 sources



NMF1: S. Ewert and M. Mueller, "Using score-informed constraints for NMF- based source separation," in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing. IEEE, 2012, pp. 129–132.

NMF2: J.-L. Durrieu, B. David, and G. Richard, "A musically motivated mid- evel representation for pitch estimation and musical audio source separation," IEEE J. Selected Topics in Signal Processing, vol. 5, no. 6, pp. 1180–1191, 2011.

UNET: D. Petermann, P. Chandna, H. Cuesta, J. Bonada, and E. Gomez, "Deep learning based source separation applied to choir ensembles," In Proc. Int. Soc. Music Inf. Retrieval Conf., 2020, pp. 733–739.



## A short audio demo and some take aways

- A short demo at
  - https://schufo.github.io/umss/
  - Ou lien local
- Some take aways
  - Only a small amount of data needed
  - Filtering the mixture better than synthesis
  - Differentiable stable all-pole filter
  - Parameterization of the mixture is provided





#### To conclude

- The potential for hybrid deep learning ...
  - Interpretability, Controllability, Explainability
    - Hybrid model becomes controllable by human-understandable parameters
    - New audio capabilities: perceptually meaningful sound transformation
  - Frugality: gain of several orders of magnitude in the need of data and model complexity
  - Towards a more resource efficient and sustainable Al