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- significant advances in Statistical
Machine Learning vs Symbolic
Machine Learning

- spectacular results of Deep Neural
Networks

- data-driven Al embedded in
decision-making processes
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. Explainability in Al
« to describe the purpose, rationale and decision-
making process of the Al tool in a way that can be
understood by the average person »
Data scientist
Expert of the field (finance for instance)

User/customer

Regulator / lawyer /...
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s | he lack of explainability in data-driven Al
Linked to the nature of statistical machine learning algorithms

Learning is a complex optimization process that takes a training dataset and produces
a predictive model

Local
Minima ?

(© Matthieu ,_-,rand) Visualization of a loss function,
Li et al. NeurlPS 2018.
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Bias in your
data ?
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mssmmon | he lack of explainability in data-driven Al

Linked to the objectives of machine learning algorithms

A learning algorithm attempts to define a predictive model by searching for input patterns
correlated with the output variable based on a strong assumption about data: the i.i.d.
assumption

Animal in the
snow ?
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i 2 .

(© Matthieu Ferrand)
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(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad
model’s prediction in the “Husky vs Wolf” task.

Before After

Trusted the bad model 10 out of 27 3 out of 27
Snow as a potential feature 12 out of 27 25 out of 27

. ” i
Table 2: “Husky vs Wolf"” experiment results. TELECOM
Faris
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mssmmon | he lack of explainability in data-driven Al

Due to the nature of the predictive models

- Some models are more explainable than others:
sparse linear models, decision trees, probabilistic graphical
models, random forests, ...

- deep neural networks exhibit a very high level of
complexity (millions of parameters)

Pb : performance is often associated to very complex
models & ability to tackle massive training datasets
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sssmmon | he Need for Explainability

Human- readable Compliance to legislation

explain

justification of a decision . explain “Right to explanation”
to build to control
trust
explain explain

to improve to discover

Information extraction

|dentification of systems flaws
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s XAl, @ compound of trustworthy Al
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s EXplainability in data-driven Al

Focus on local explainability: provide an “explanation” of the
predictive model’s decision

What is an « explanation » ? For whom ? a data scientist, an expert of the field
a user, the regulator ?

Main factors that led to that prediction
High level concepts that are activated when the prediction is given

Counterfactual reasoning: if | change this feature value, does the prediction
change ?
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. Explanations also depend on the nature of data

Multivariate hand-defined features
Image / Audio / Video

Natural Language processing
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- Post-hoc Approaches: local linear proxy

B LIME (Ribeiro et al. 2016)

B Model-agnostic approach that . ++ y
builds a sparse linear proxy model ‘ f
to get insights on a local decision + @
once the whole model is learned. -|-'|l' ®
-+H ® . -+
| @ 0®

B Perturbation-based approach
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Post-hoc Approaches: saliency maps

Integrated Gradient

. : Edge
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Fig. Adebayo et al. NeurlPS 2018.

/s the predictive model, x is the input: f Refs: Werbos 1982, Pridy et al. 1993, Steppe & Bauer 1997,

Simonyan et al. 2013, Springenberg et al. 2014,
ax Smilkov et al. 2017, Selvajaru et al. 2017... TELECOM
mHET
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Post-hoc approaches: Tree explainer
(Lundberg et al. 2019)

(A) “Black box” model prediction - “White box” local explanation
Age =65 Age = 65 —f==> +25
BMI =40 BMI =40 — »> +0.5
Blood pressure = 180 Blood pressure = 180 — — 43
Sex = Female Sex = Female — -
!
Mortality risk score =4 Mortality risk score = 4
®) Combining local explanations from many samples... ...can lead to global model insights

Model summarization §27.
Tree
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Explanation embeddings §27.5
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Explainability By Design

M |dentify a (specific) neural network to a set of logical rules (hybrid
networks)

B Modify the architecture of a network to make it interpretable (Self-
explainable Networks, Alvarez-Melis & Jaakola 2018)

SENN
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I Explainability by design

B Impose some properties that an interpretable neural network should
satisfy, (d’Alché-Buc et al. 1994, Alvarez-Melis et al. 2018, Plumb et al.
2019)

* (logical) consistency: non contradictory rules

« Completeness

» Fidelity of the « explanations » to the model’s output
« Sparsity of high level concepts

- Stability of explanations

B |earn jointly two models: one for prediction, the other for explanation
(Hendricks et al. 2016, Dong et al. 2017, Parekh et al. 2020)
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Explainability by design

B Generating visual explanations: Hendrycks et al. 2016

This is a Kentucky
warbler because this
is a yellow bird with a
black cheek patch
and a black crown.

This is a pied billed
grebe because this
is a brown bird with
along neck and a
large beak.

B red head and breast
il with a gray wing and
& white wing.

This is a cardinal because ...

7 Deep Finegrained Classifier ) ‘ (" Recurrent explanation generator model A

—

| Goncat |
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Label

Compact Bilinear
Feature
¥
Predicted
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s XAl N its infancy

B Tools on the shelves: mainly post-hoc approaches — good for existing black box models
currently in production, but with some flaws: provide an explanation but may be not the one
« used » by the model

B Formal work on interpretations/explanations in ML, re-think machine learning/Al at the lense
of explainability for a next generation Al tools

B « Can biologist fix a radio ? » (Lazebnik, 2002) the celebrated paper in quantiative
biology in 2000’s applies somehow here. Can a statistician provides an explanation ?

- Explanations are currently more interpretations than explanations: what link with
reasoning ? What link with logics ? What link with knowledge ?

- Making a predictive model explainable belongs more to symbolic Al and calls for
automated reasoning, knowledge representation etc... a lot to borrow from years of Al.

B Other ways of thinking: counterfactual reasoning, intervention, Bayesian approaches,
probabilistic programming, knowledge graph and automated reasoning

TELECOM

Paris
mHET
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FLINT: a framework for learning intepretable

. network

X —

Usage 1:

Predictor f

Joint learning of f
and g,

Mutual benefits,
g can even the
final predictor

Explainer g

Parekh et al. 2020.
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Usage 2:
Post-hoc/reverse
engineering of a
pre-defined
network f
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Platform, common tools:

*  What If tools (Google), Captum (Pytorch/Facebook), 360xAl (IBM)
https://aix360.mybluemix.net/, iml R package
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