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Deep Neural networks run on unoptimized hardware
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Deep Neural networks run on unoptimized hardware
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E. Strubell et al, 
https://arxiv.org/abs/1906.02243v1

https://arxiv.org/abs/1906.02243v1


Current CMOS processors cannot run future AI
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Training neural networks on current computers is 
extremely power inefficient
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Digital computer: 

CPUs, GPUs, TPUs, FPGAs
Operation Energy consumption

Addition of data 1x

Access data (onchip 
cache)

60x

Access data (offchip 
RAM)

3500x

Pedram et al, IEEE Xplore (2017)



Training neural networks on current computers is 
extremely power inefficient
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Digital computer: 

synapse

neuron neuron
memory

processing

Brain : 20 W

processing

CPUs, GPUs, TPUs, FPGAs

1000 kW.h to train a 
Natural Language Processor

6 years of brain operation 

D. Marković et al, "Physics for neuromorphic computing", Nature Review Physics 2020



Orders of magnitude in energy can be saved by 
assembling physical synapses and neurons in 
neuromorphic chips
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Hundred millions of neurons and synapses in a 1 cm2 chip 
 Each device smaller than 1 µm2

Nano
neurons

Nano
neuronsNano-synapses



CMOS neurons and synapses are complex circuits 
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• A transistor is nanoscale but it is just a switch

• CMOS does not provide memory (volatile)

10-100 µm

Brainscales 20 wafer machine. 4M neurons, 1B synapses 

CMOS neuron

CMOS synapse 10 µm

Merolla et al, Science 345, 668 (2014)
Davies et al, IEEE Micro. 38, 82–99 (2018)



Transistors alone won’t do the job: they should be
complemented by emerging nanotechnologies

9Zhang et al, Nature Electronics 3, 371 (2020)

CMOS 
only

Nanotech
+ CMOS

CMOS 
only

Nanotech
+ CMOS



The power of novel nanotechnologies for AI

10



Novel nanotechnologies are monothically integrated in 
major foundry process: they are commercially available
and bring memory at the closest to compute

Intel: MRAM 
integrated into 22nm 
FinFET CMOS

Bocquet, …, Vianello, Portal, Querlioz, 
IEEE IEDM, 2018

RRAM
TE

BE

CEA LETI: 130nm CMOS + HfO2 RRAM 

Resistive-Switching
ReRAMs

Spintronics
magnetic tunnel junctions

Phase Change

ST microelectronics

11
Memristors



They are multifunctional: they can emulate
many features of neurons and synapses

Phase-change

Optics

Filamentary switching

Ferroelectrics

Organics Spintronics
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Neurons are non-linear and synapses are valves with
memory

I
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D. Guan et al, J Neurophysiol. 113, 2014 (2015)
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𝑦

Real 
values

• Most neural networks today

• Brain

is called a Multiply and 
Accumulate (MAC) 
operation

𝑦 = 𝑤𝑖𝑥𝑖
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State-of-the-art neural networks are deep: 
they extract features layer by layer
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Synapses and neurons should be densely
interconnected

Cortex: 104 synapses / neurones = 104 wires/neurons

15Moritz Helmstaedter lab, retina flight 2013



• Memristive neural nets

• Spintronics neural nets
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Non-volatile memristors emulate synapses
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Filamentary switching Phase change

Chua, IEEE Trans. 

Circuit Theory (1971)

Yang et al., 

Nature Nano. (2013)

Kuzum et al, 

Nanotechnology (2013)

Ferroelectric

Chanthbouala et al, 

Nature Mat. (2012) 



Going deep: crossbar arrays of memristors physically
implement the multiply and accumulate operation

18

memristor

CMOS

HP labs

 100 synapses per neuron

Strukov and Williams, 

PNAS 106, 20155 (2009)

Current I = S Gi Ui

Input neurons

Output
neurons

U1

U2

U3

G1

G2

G3

I

Lin et al, Nature Electronics 3, 225 (2020)

10,000 synapses 
per neuron ?



• Memristive neural nets

• Spintronics neural nets
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Deep learning through RF communications?
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Magnetic tunnel junctions can be used as 
radio-frequency neurons
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CoFeB

FeB

MgO

spin  torque

J. Grollier et al, “Neuromorphic Spintronics”, Nature Electronics (2020) 

magnetic tunnel junction

compatible with CMOS

10-100 nm

Nanoscale, fast (GHz), non-linear and easily measurable 

Same structure as magnetic memories
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Step 1: Single junction

22
J. Torrejon, M. Riou, F. Abreu Araujo et al, Nature 547, 428 (2017)

TI-46 database, 5 female speakers, cochlear pre-processing

Due to its rich dynamics the nano-oscillator recognizes spoken digits with a 
success rate > 99.6%



Step 2: RF communication between the 
two layers of a magnetic neural network

M. Romera, P. Talatchian et al, Nature 563, 230 (2018)
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Step 3: connect layers of radio-frequency 
neurons with tunable synapses

𝑤1
𝑤2
𝑤3

𝑤4

𝑧𝑥2

𝑥3

𝑥4

𝑦
𝑥1

+
𝑦 = 𝑤𝑖𝑥𝑖

• Multiply-And-Accumulate (MAC)

24

? ? ?

N. Leroux et al, Radio-Frequency Multiply-And-Accumulate Operations with Spintronic Synapses, 

arxiv:2011.07885



A magnetic tunnel junction can perform the 
multiplication operation on an RF signal
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Output = Input * Weight
Input: RF Power received by MTJ
Output: DC Voltage accross the MTJ
Weight is a function of frequency mismatch W(fRF – fres)

𝑉𝐷𝐶

𝑃𝑅𝐹 , 𝑓𝑅𝐹

𝑉𝐷𝐶 = 𝑃𝑅𝐹 ×𝑊

resonance
fres
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We perform the MAC operation through 
frequency multiplexing
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Frequency multiplexing make high density 
connectivity possible
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Two magnetic tunnel junctions perform the 
MAC on RF signals

𝑉𝑡ℎ = 𝑃𝑅𝐹
1 ×𝑊1 𝑓𝑅𝐹

1 − 𝑓𝑟𝑒𝑠
1 + 𝑃𝑅𝐹

2 ×𝑊2 𝑓𝑅𝐹
2 − 𝑓𝑟𝑒𝑠

2𝑓𝑅𝐹
1 = 540 MHz, 𝑃𝑅𝐹

1

𝑓𝑅𝐹
2 = 174 MHz, 𝑃𝑅𝐹

2

Σ

28

RMS error = 0.41 µV

𝑊1 𝑊2



A simulated single synaptic layer 
perceptron recognizes digits database
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• Simulations realized with PyTorch
• Analytical model for the spin-diodes

99.95 % of accuracy
Pixels converted to 𝑷𝑹𝑭
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N. Leroux et al, 

arxiv:2011.07885
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DC DCΣ

RF

Σ

RF

LAYER 1 LAYER 2

synapses synapses
neurons neurons

Our goal is to design and build a deep neural 
network made of spintronic nano-synapses 
and nano-neurons with RF interconnexions



The downside of novel nanotechnologies for AI
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Nanodevices are by essence noisy, imperfect and highly
variable from device to device

Zhang et al, Nature Electronics 3, 371 (2020)

Panorama of memristor synapse faults

First fully integrated memristor/CMOS chip: only
92% on MNIST due to device variability

32



Backward pass

They are hardly compatible with the flagship training 
algorithm of deep neural networks: backpropagation of errors

Yann Lecun, Yoshua Bengio and Geoffrey Hinton, Nature 521, 436 (2015)

Forward pass: inference

∆𝑤 = −𝛼
𝜕𝐸

𝜕𝑤

∆𝑤

𝑤
< 10−5
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Software

Instruction Set

Architectures

Circuits

Primitives

Information encoding

Physical devices

Effective use of new devices 
requires working across the 
whole computational stack
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Three main approaches

1- implement backpropagation

2- make backpropagation more hardware-compatible (top-down)

3 - find new ways to perform hardware-compatible learning (bottom-up)

35



Three main approaches

1- implement backpropagation

2- make backpropagation more hardware-compatible (top-down)

3 - find new ways to perform hardware-compatible learning (bottom-up)

Geoffrey Hinton
AI pioneer
Turing Prize

Can the brain do a 
form of 
backpropagation?

36



Backpropagation requires cumbersome external circuits and 
additional memories to store activations and gradients

Lillicrap et al, "Backpropagation and the brain", Nature Reviews Neuroscience (2020)

There are no 
external circuits, no 
additional memories
in the brain: how are 
gradients computed, 
stored and applied to 
synapses ?

37

Backward pass
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Learning through physics: networks that minimize their error
at the same time as they minimize their energy

Cost function

s  neuron state 
ρ neuron rate = neuron output

𝑑𝑤𝑖𝑗

𝑑𝑡
= ሶ𝜌(𝑠𝑖)𝜌(𝑠𝑗) + ሶ𝜌(𝑠𝑗)𝜌(𝑠𝑖)Learning rule:

B. Scellier & 

Y. Bengio, 

Front. Comput. 

Neuroscience

04 May 2017
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Learning through physics: networks that minimize their error
at the same time as they minimize their energy

Cost function

The EP learning rule is equivalent to Backpropagation 
through time

s  neuron state 
ρ neuron rate = neuron output

𝑑𝑤𝑖𝑗

𝑑𝑡
= ሶ𝜌(𝑠𝑖)𝜌(𝑠𝑗) + ሶ𝜌(𝑠𝑗)𝜌(𝑠𝑖)

M Ernoult, J Grollier, D Querlioz, Y Bengio, B Scellier, NeurIPS 2019 

Learning rule:

B. Scellier & 

Y. Bengio, 

Front. Comput. 

Neuroscience

04 May 2017
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EqSpike is a spiking version of Equilibrium
Propagation compatible with
neuromorphic implementations

E. Martin et al, EqSpike: Spike-driven Equilibrium Propagation for Neuromorphic Implementations,

arXiv:2010.07859

Bidirectional SNN (784 -300-10), 97.6% on 
MNIST (SOA for online-trained SNNs)

Towards intrinsic learning



Conclusion

41



Future high performance, low power AI requires
emerging nanotechnologies and physics

Software

Instruction Set

Architectures

Circuits

Primitives

Information encoding

Physical devices

Effective use of new devices 
requires working across the 
whole computational stack
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