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5G Mobile Networks

Mobile networks will have to deal with

Enormous number of connected devices
Resource-hungry applications
Exponential growth of mobile traffic

Global ICT ecosystem consumes more than 2000 TWh of electricity annually

predicted to grow to 20% of global electricity demand by 2030
greatly increased emitted carbon footprint
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Challenges and Promising Solutions

Mobile terminals limitations:

Processing capacity

Storage

Energy

Promising solutions:

Energy Harvesting (EH)

Computation offloading
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Work Objective

Design efficient policies for resource scheduling and computation offloading under EH
constraints

Optimize transmission policies taking into account:

Random data arrivals statistics
Sporadic energy arrivals statistics
Channel conditions
Packet queue status
Battery energy level
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Joint Resource Scheduling and Computation Offloading

Data arrival ∼ Poisson distribution with mean λd
Energy arrival ∼ Poisson distribution with mean λe

Constant channel during a time slot with perfect CSIT
At the beginning of each time slot, mobile device decides:

Type of processing: locally or remotely
Number of packets to be processed
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Strict Delay Constraint

Previous works: Average delay constraint

Little’s law: convert average delay constraint into average queue length constraint

Drawback: packets can stay in the buffer for long time

Proposed scheme: Strict delay constraint

ki(n) is the age of the i-th packet at the beginning of time slot n

A packet can be discarded due to

Delay violation The i-th packet is discarded if ki(n) > K0

Buffer overflow: New arrivals are discarded if qn = Bd
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Energy Cost

At the beginning of each time slot, 3 possible processing decisions:

Local processing: Mobile device executes u packets

E`(u) =

⌈
u.P`.

Ts

EU

⌉

Remote processing: Mobile device transmits u packets to be executed at BS

Eo(x, u) =

⌈
u

EU

(
L.Pt

WUL. log2
(
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) + Tw.Pw +
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Idle: Mobile device waits for the next time slot

EI = 0
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Markov Decision Process

State space: S = (k, b, x)

k = [k1, · · · , kBd
]: age of each packet in the data buffer

b: battery level
x: channel gain (quantized value)

Action space: Type of processing and number of packets u

Cost: Average number of discarded packets due to

Delay:

εd(sn, νn) =

{
0 if mn = 0 or mn 6 uνn

mn − uνn otherwise.

Overflow:

εo(sn, νn) =

+∞∑
a=Bd−qn+wn+1

(qn − wn + a−Bd).e−λd .
(λd)

a

a!
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Dynamic Programming Approach

Fully-known system states and transitions

Optimal Deterministic Offline policy using Policy Iteration algorithm

Policy Iteration (PI)

Policy Evaluation
βn−11+ (Id−P)vn−1 = cn−1∑

s∈S
vn−1(s) = 0

Policy Improvement

µn(s) = argmin
u∈U

[
c(s, u) +

∑
s′∈S

p(s′|s, u)vn−1(s′)

]
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Numerical Results - Convergence and Processing Decisions

Convergence of average number of discarded
packets for different energy arrival rates Percentage of processing decisions

Only few hundreds of slots are needed for the system to achieve the long-term cost

λe ↗ ⇒ Average number of discarded packets↘

λd ↗ ⇒ Idle mode↘
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Reinforcement Learning (RL)

DP Solution:

Advantage: Optimal Solution

Drawback: Only applicable when the environment model is known

Alternative Solution: Reinforcement Learning (RL)

Learn the state-action function: Q(s, u) while interacting with the environment
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Q-Learning Algorithm

Algorithm 1 Q-Learning Algorithm

1: Set learning rate α
2: Initialize Q(s, u) for all s ∈ S and u ∈ U(s) randomly
3: for t = 1, T do
4: Generate random state s0
5: for n = 0, N do
6: un = argminuQ(sn, u) with probability 1− ε

Otherwise, un is selected randomly
7: Execute un and observe c(sn, un) and sn+1

8: Update Q(s, u) with (1− α)Q(s, u) + α(c(sn, un) + minuQ(sn+1, u))

9: end for
10: end for
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Deep Reinforcement Learning (DRL)

DP and RL Solutions:

Drawback: Impractical and very complex with large system states

Alternative Solution: Function Approximation

Estimate of the state-action function: Q(s, u, θ) ≈ Q?(s, u)

Non-linear function: Neural-Network (NN)→ Deep Q-Network (DQN)
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Training the NN

Learn θ by minimizing the MSE between:

I Target = c(sn, un) + minuQ(sn+1, u; θ)

I Prediction = Q(sn, un; θ)

Ensure stable learning by applying:

I Experience Replay: Store the experience [sn, un, c(sn, un), sn+1] in replay memory
M, and train using random mini-batches fromM.

I Fixed target Network: Use a second network where its weights θ′ are fixed, and only
periodically or slowly updated to the primary network values for Q(sn+1, u; θ′)

I Double DQN: Use a second network to decouple the action selection from the target Q
value generation, i.e. Q(sn+1, argminuQ(sn+1, u; θ); θ′)

Ensure adequate exploration of the state space by using ε-greedy strategy:

I Choose best action un = minuQ(sn, u; θ) with probability 1− ε

I Select random action with probability ε
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Double Deep Q-Learning Algorithm

Algorithm 2 Double Deep Q-Learning algorithm

1: Initialize replay memoryM to capacity M
2: Initialize Q-network with random weights θ
3: Initialize target Q-network with random weights θ′ = θ

4: for t = 1, T do
5: Generate random state s0
6: for n = 0, N do
7: un = argminuQ(sn, u; θ) with probability 1− ε

Otherwise, un is selected randomly
8: Execute un and observe c(sn, un) and sn+1

9: Store experience [sn, un, c(sn, un), sn+1] inM
10: Sample random mini-batch of Bm transitions fromM
11: Set the target to c(sn, un) +Q(sn+1, argminuQ(sn+1, u; θ); θ′)

12: Perform Adam update on θ
13: end for
14: Update target network, i.e. θ′ = θ

15: end for
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1-Step Training example (1)

1. Interact/Explore

⇓

MemoryM

[s0, u0, c0, s1]

[s1, u1, c1, s2]

...
[sn, un, cn, sn+1]
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1-Step Training example (2)

2. Prepare data/Train the network

MemoryM

[s0, u0, c0, s1]

[s1, u1, c1, s2]

...
[sn, un, cn, sn+1]

argminuQ(sn+1, u; θ)
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2. Prepare data/Train the network

MemoryM

[s0, u0, c0, s1]

[s1, u1, c1, s2]

...
[sn, un, cn, sn+1]

argminuQ(sn+1, u; θ)

u3

argminuQ(sn+1, u; θ)
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1-Step Training example (2)

2. Prepare data/Train the network

MemoryM

[s0, u0, c0, s1]

[s1, u1, c1, s2]

...
[sn, un, cn, sn+1]

argminuQ(sn+1, u; θ)

u3

argminuQ(sn+1, u; θ) Q(sn+1, argminuQ(sn+1, u; θ); θ′)

c1 +Q(sn+1, argminuQ(sn+1, u; θ); θ′)

Target

Prediction
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Numerical Results - Discarded Packets

Percentage of discarded packets versus data arrival rate for different energy arrival rates

RL policy is almost optimal in most of the cases.

DRL policy achieve optimal performance for high λd.
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Numerical Results - Processing Decisions

Percentage of processing decisions

Small λd, λe ↗ ⇒ local mode↗

Mireille Sarkiss DRL-based offloading policies of EH devices November 19, 2020 19 / 21



Introduction Problem Statement Model-based Approach Model-Free Approach Conclusion

Numerical Results - Processing Decisions

Percentage of processing decisions

High λd, λe ↗ ⇒ remote and local modes↗
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Conclusion

Main objective: Propose policies for 5G mobile system with

Offloading capabilities

Energy harvesting

Strict delay

Investigate resource scheduling and computation offloading for EH mobile device

Optimal policy outperforms other policies by adapting the number of executed packets to
the system states
DRL-based policy can be improved by improving training

with larger training set
using multistep learning algorithms
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