DRL-based policies for joint resource scheduling and computation offloading of Energy Harvesting Devices

Mireille Sarkiss

Joint work with: Ibrahim Fawaz (Telecom SudParis), Philippe Ciblat (Telecom Paris) and Deniz Gündüz (Imperial College)

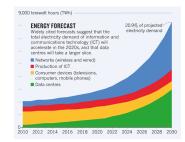
Electrical Engineering Artificial Intelligence Day

November 19, 2020

5G Mobile Networks

- Mobile networks will have to deal with
 - Enormous number of connected devices
 - Resource-hungry applications
 - Exponential growth of mobile traffic





- Global ICT ecosystem consumes more than 2000 TWh of electricity annually
 - predicted to grow to 20% of global electricity demand by 2030
 - greatly increased emitted carbon footprint

Challenges and Promising Solutions

Mobile terminals limitations:

- Processing capacity
- Storage
- Energy

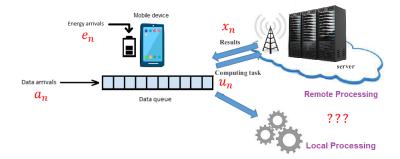
Promising solutions:

- Energy Harvesting (EH)
- Computation offloading

Work Objective

- Design efficient policies for resource scheduling and computation offloading under EH constraints
- Optimize transmission policies taking into account:
 - Random data arrivals statistics
 - Sporadic energy arrivals statistics
 - Channel conditions
 - Packet queue status
 - Battery energy level

Joint Resource Scheduling and Computation Offloading



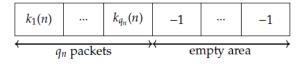
- Data arrival \sim Poisson distribution with mean λ_d
- Energy arrival \sim Poisson distribution with mean λ_e
- Constant channel during a time slot with perfect CSIT
- At the beginning of each time slot, mobile device decides:
 - Type of processing: locally or remotely
 - Number of packets to be processed

Strict Delay Constraint

Previous works: Average delay constraint

- Little's law: convert average delay constraint into average queue length constraint
- Drawback: packets can stay in the buffer for long time

Proposed scheme: Strict delay constraint



- $k_i(n)$ is the age of the *i*-th packet at the beginning of time slot *n*
- A packet can be discarded due to
 - **Delay violation** The *i*-th packet is discarded if $k_i(n) > K_0$
 - **Buffer overflow:** New arrivals are discarded if $q_n = B_d$

Energy Cost

At the beginning of each time slot, 3 possible processing decisions:

• Local processing: Mobile device executes *u* packets

$$E_{\ell}(u) = \left[u.P_{\ell}.\frac{T_s}{\mathcal{E}_U} \right]$$

Remote processing: Mobile device transmits *u* packets to be executed at BS ۲

$$E_o(x,u) = \left\lceil \frac{u}{\mathcal{E}_U} \left(\frac{L.P_t}{W_{UL} \cdot \log_2\left(1 + \frac{P_t.x}{W_{UL} \cdot N_0}\right)} + T_w.P_w + \frac{L_{DL}.P_r}{W_{DL} \cdot \log_2\left(1 + \frac{P_s.x}{W_{DL} \cdot N_0}\right)} \right) \right\rceil$$

Idle: Mobile device waits for the next time slot

$$E_I = 0$$

Markov Decision Process

- State space: $S = (\mathbf{k}, b, x)$
 - $\mathbf{k} = [k_1, \cdots, k_{B_d}]$: age of each packet in the data buffer
 - b: battery level
 - x: channel gain (quantized value)
- Action space: Type of processing and number of packets u
- Cost: Average number of discarded packets due to
 - Delay:

$$\varepsilon_d(\mathbf{s}_n, \nu_n) = \begin{cases} 0 & \text{if } m_n = 0 \text{ or } m_n \leqslant u_{\nu_n} \\ m_n - u_{\nu_n} & \text{otherwise.} \end{cases}$$

Overflow:

$$\varepsilon_o(\mathbf{s}_n,\nu_n) = \sum_{a=B_d-q_n+w_n+1}^{+\infty} (q_n - w_n + a - B_d) \cdot e^{-\lambda_d} \cdot \frac{(\lambda_d)^a}{a!}$$

Introduction

Problem Statement

Dynamic Programming Approach

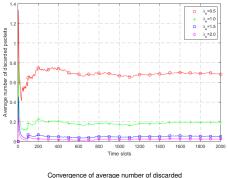
- Fully-known system states and transitions
- Optimal Deterministic Offline policy using Policy Iteration algorithm
- Policy Iteration (PI)
 - Policy Evaluation

$$\beta^{n-1}\mathbf{1} + (\mathbf{Id} - \mathbf{P})\mathbf{v}^{n-1} = \mathbf{c}^{n-1}$$
$$\sum_{s \in S} v^{n-1}(s) = 0$$

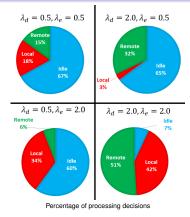
Policy Improvement

$$\mu^n(s) = \operatorname*{arg\,min}_{u \in \mathcal{U}} \left[c(s,u) + \sum_{s' \in \mathcal{S}} p(s'|s,u) v^{n-1}(s') \right]$$

Numerical Results - Convergence and Processing Decisions



packets for different energy arrival rates



- Only few hundreds of slots are needed for the system to achieve the long-term cost
- $\lambda_e \nearrow \Rightarrow$ Average number of discarded packets \searrow
- $\lambda_d \nearrow \Rightarrow$ Idle mode \searrow

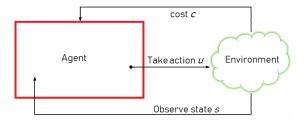
Reinforcement Learning (RL)

DP Solution:

- Advantage: Optimal Solution
- Drawback: Only applicable when the environment model is known

Alternative Solution: Reinforcement Learning (RL)

• Learn the state-action function: Q(s, u) while interacting with the environment



Q-Learning Algorithm

Algorithm 1 Q-Learning Algorithm

- 1: Set learning rate α
- 2: Initialize Q(s, u) for all $s \in S$ and $u \in U(s)$ randomly
- 3: for t = 1, T do
- 4: Generate random state s_0
- 5: **for** n = 0, N **do**
- 6: $u_n = \arg \min_u Q(s_n, u)$ with probability 1ϵ
 - Otherwise, u_n is selected randomly
- 7: Execute u_n and observe $c(s_n, u_n)$ and s_{n+1}
- 8: Update Q(s, u) with $(1 \alpha)Q(s, u) + \alpha(c(s_n, u_n) + \min_u Q(s_{n+1}, u))$
- 9: end for
- 10: end for

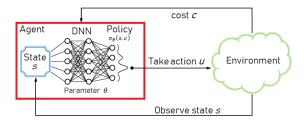
Deep Reinforcement Learning (DRL)

DP and RL Solutions:

• Drawback: Impractical and very complex with large system states

Alternative Solution: Function Approximation

- Estimate of the state-action function: $Q(s, u, \theta) \approx Q^{\star}(s, u)$
- Non-linear function: Neural-Network (NN) \rightarrow Deep Q-Network (DQN)



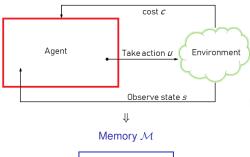
- fraining the MN
 - Learn θ by minimizing the MSE between:
 - Target = $c(s_n, u_n) + \min_u Q(s_{n+1}, u; \theta)$
 - Prediction = $Q(s_n, u_n; \theta)$
 - Ensure stable learning by applying:
 - **Experience Replay:** Store the experience $[s_n, u_n, c(s_n, u_n), s_{n+1}]$ in replay memory \mathcal{M} , and train using random mini-batches from \mathcal{M} .
 - Fixed target Network: Use a second network where its weights θ' are fixed, and only periodically or slowly updated to the primary network values for Q(s_{n+1}, u; θ')
 - ► **Double DQN:** Use a second network to decouple the action selection from the target Q value generation, i.e. $Q(s_{n+1}, \arg \min_u Q(s_{n+1}, u; \theta); \theta')$
 - Ensure adequate exploration of the state space by using *e*-greedy strategy:
 - Choose **best** action $u_n = \min_u Q(s_n, u; \theta)$ with probability 1ϵ
 - Select random action with probability ϵ

Double Deep Q-Learning Algorithm

Algorithm 2 Double Deep Q-Learning algorithm

- 1: Initialize replay memory \mathcal{M} to capacity M
- 2: Initialize Q-network with random weights θ
- 3: Initialize target Q-network with random weights $\theta' = \theta$
- 4: for t = 1, T do
- 5: Generate random state s₀
- 6: **for** n = 0, N **do**
- 7: $u_n = \arg \min_u Q(s_n, u; \theta)$ with probability 1ϵ
 - Otherwise, u_n is selected randomly
- 8: Execute u_n and observe $c(s_n, u_n)$ and s_{n+1}
- 9: Store experience $[s_n, u_n, c(s_n, u_n), s_{n+1}]$ in \mathcal{M}
- 10: Sample random mini-batch of B_m transitions from \mathcal{M}
- 11: Set the target to $c(s_n, u_n) + Q(s_{n+1}, \arg\min_u Q(s_{n+1}, u; \theta); \theta')$
- 12: Perform Adam update on θ
- 13: end for
- 14: Update target network, i.e. $\theta' = \theta$
- 15: end for

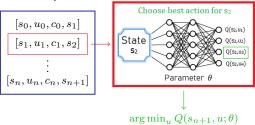
1. Interact/Explore



$[s_0, u_0, c_0, s_1]$
$[s_1, u_1, c_1, s_2]$
:
$[s_n, u_n, c_n, s_{n+1}]$

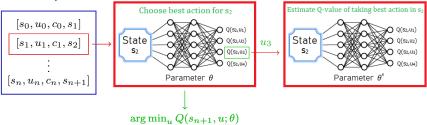
2. Prepare data/Train the network

$\text{Memory}\;\mathcal{M}$



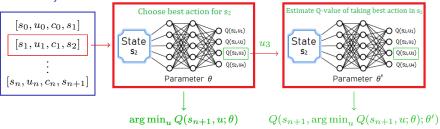
2. Prepare data/Train the network

Memory \mathcal{M}



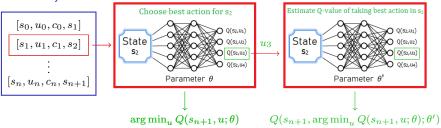
2. Prepare data/Train the network

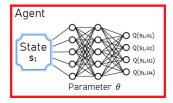
Memory \mathcal{M}



2. Prepare data/Train the network

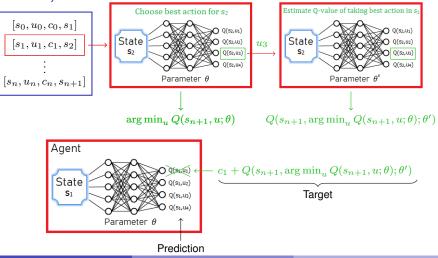
$\text{Memory}\;\mathcal{M}$



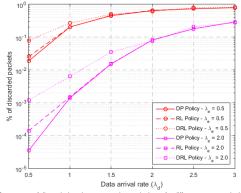


2. Prepare data/Train the network

$\text{Memory}\;\mathcal{M}$



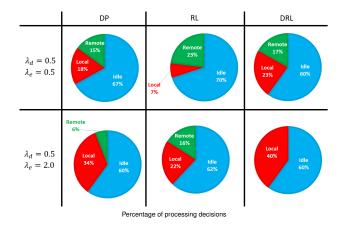
Numerical Results - Discarded Packets



Percentage of discarded packets versus data arrival rate for different energy arrival rates

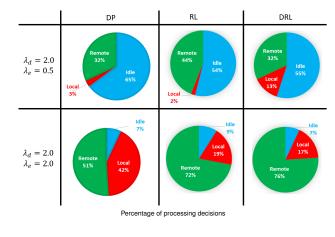
- RL policy is almost optimal in most of the cases.
- DRL policy achieve optimal performance for high λ_d.

Numerical Results - Processing Decisions



• Small $\lambda_d, \lambda_e \nearrow \Rightarrow \text{local mode } \nearrow$

Numerical Results - Processing Decisions



• High $\lambda_d, \lambda_e \nearrow \Rightarrow$ remote and local modes \nearrow

Intr			

Conclusion

- Main objective: Propose policies for 5G mobile system with
 - Offloading capabilities
 - Energy harvesting
 - Strict delay
- Investigate resource scheduling and computation offloading for EH mobile device
 - Optimal policy outperforms other policies by adapting the number of executed packets to the system states
 - DRL-based policy can be improved by improving training
 - with larger training set
 - using multistep learning algorithms