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Introduction

5G Mobile Networks

@ Mobile networks will have to deal with

m Enormous number of connected devices
m Resource-hungry applications
m Exponential growth of mobile traffic

9,000 terawatt hours (TWh)

ENERGY FORECAST 20.9% of projected
14 Widely cited forecasts suggest that the eleciricity demand
total electricity demand of information and
communications technology (ICT) will
accelerate in the 2020s, and that data
centres willtake a larger sice.
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@ Global ICT ecosystem consumes more than 2000 TWh of electricity annually

m predicted to grow to 20% of global electricity demand by 2030
m greatly increased emitted carbon footprint
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Introduction

Challenges and Promising Solutions

Mobile terminals limitations:
@ Processing capacity
@ Storage

@ Energy

a
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Promising solutions: \ ! ya |
\\ / :

@ Energy Harvesting (EH)

@ Computation offloading
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Introduction

Work Objective

@ Design efficient policies for resource scheduling and computation offloading under EH
constraints

@ Optimize transmission policies taking into account:
Random data arrivals statistics

Sporadic energy arrivals statistics

Channel conditions

Packet queue status

Battery energy level
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Problem Statement

Joint Resource Scheduling and Computation Offloading

Mobile device

Energy arrivals j o
e" E
Computing task

Dataarrivalsél I I I I I I I I I |un

an Data queue \ Remote Processing
%
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server

@ Data arrival ~ Poisson distribution with mean A4

@ Energy arrival ~ Poisson distribution with mean A,

@ Constant channel during a time slot with perfect CSIT

@ At the beginning of each time slot, mobile device decides:
m Type of processing: locally or remotely
= Number of packets to be processed
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Problem Statement

Strict Delay Constraint

Previous works: Average delay constraint

@ Little’s law: convert average delay constraint into average queue length constraint

@ Drawback: packets can stay in the buffer for long time

Proposed scheme: Strict delay constraint

kq(m) kg, (n) -1 _1

qn packets ) empty area

@ k;(n) is the age of the i-th packet at the beginning of time slot n
@ A packet can be discarded due to

m Delay violation The i-th packet is discarded if k;(n) > Ko
m Buffer overflow: New arrivals are discarded if g, = By
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Problem Statement

Energy Cost
At the beginning of each time slot, 3 possible processing decisions:
@ Local processing: Mobile device executes u packets

Ey(u) = [U Py. (‘:T;"

@ Remote processing: Mobile device transmits u packets to be executed at BS

u L.P Lpyr.Pr
Eo(z,u) = [?( - Pi.x + Tw.Puw + o Py.x >—‘
U \ Wy logy (1 + w7 -5) W logy (1 + w3 )
@ Idle: Mobile device waits for the next time slot
E[ =0
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Problem Statement

Markov Decision Process

@ State space: S = (k,b,x)
m k = [k1,--- ,kB,]: age of each packet in the data buffer
m b: battery level
m z: channel gain (quantized value)

@ Action space: Type of processing and number of packets u

@ Cost: Average number of discarded packets due to

m Delay:
0 if mp, =00rmy < uy,

5d(sn7 Vn) = {

mn — uy, Otherwise.

m Overflow:

= Ay (Aa)®
50(SnaVn) = Z (gn —wn—I—a—Bd).e’ d.i]
a=Bg—qn+wn+1 @
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Model-based Approach

Dynamic Programming Approach

@ Fully-known system states and transitions

@ Optimal Deterministic Offline policy using Policy Iteration algorithm

@ Policy Iteration (PI)

m Policy Evaluation
anll + (Id _ P)V”71 — Cnfl

Z v ls) =0

seS
m Policy Improvement

u"(s) = arg min [c(s,u) + Z p(s’|s, u)v™ "1 (s)

ueU €S
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Model-based Approach

Numerical Results - Convergence and Processing Decisions
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@ Only few hundreds of slots are needed for the system to achieve the long-term cost
@ \c /' = Average number of discarded packets “\,
@ )\ = Idle mode
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Model-Free Approach

Reinforcement Learning (RL)

DP Solution:

@ Advantage: Optimal Solution

@ Drawback: Only applicable when the environment model is known

Alternative Solution: Reinforcement Learning (RL)

@ Learn the state-action function: Q(s, u) while interacting with the environment

1 cost ¢ ‘
Agent Takeaction ¢ Environment
—_—

Observe state s ‘
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Model-Free Approach

Q-Learning Algorithm

Algorithm 1 Q-Learning Algorithm

1: Set learning rate «
2: Initialize Q(s,u) for all s € S and u € U(s) randomly
3: fort=1,7do

4: Generate random state sg
5: forn=0,Ndo
6: up = arg miny, Q(sn,u) with probability 1 — €
Otherwise, u., is selected randomly
7 Execute u,, and observe c(sn, un) and sp4+1
8: Update Q(s, w) with (1 — a)Q(s, u) + a(c(sn, un) + ming Q(sn+1,u))
9: end for
10: end for
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Model-Free Approach

Deep Reinforcement Learning (DRL)

DP and RL Solutions:

@ Drawback: Impractical and very complex with large system states

Alternative Solution: Function Approximation

@ Estimate of the state-action function: Q(s,u, 0) ~ Q* (s, u)

@ Non-linear function: Neural-Network (NN) — Deep Q-Network (DQN)

1 cost ¢ ‘
Agent DNN Policy
LStgtEw Take action & Environment

Observe state s ‘

Mireille Sarkiss November 19, 2020 13/21



Model-Free Approach

Training the NN

@ Learn 6 by minimizing the MSE between:
» Target = c(sn,un) + miny, Q(sn+1,u;0)

» Prediction = Q(sn, un;0)

@ Ensure stable learning by applying:
» Experience Replay: Store the experience [sn, un, c(sn, un), Sn+1] in replay memory
M, and train using random mini-batches from M.

> Fixed target Network: Use a second network where its weights 6’ are fixed, and only
periodically or slowly updated to the primary network values for Q(syn+1,u;6")

» Double DQN: Use a second network to decouple the action selection from the target Q
value generation, i.e. Q(sn+1,argmin, Q(sp+1,u;0);0")

@ Ensure adequate exploration of the state space by using e-greedy strategy:
» Choose best action u,, = min, Q(sn,u;0) with probability 1 — e

» Select random action with probability e
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Model-Free Approach

Double Deep Q-Learning Algorithm

Algorithm 2 Double Deep Q-Learning algorithm

1: Initialize replay memory M to capacity M

2: Initialize Q-network with random weights 6

3: Initialize target Q-network with random weights 6’ = 6
4: fort=1,T do

5: Generate random state sg

6: forn=0,Ndo

7 uy, = arg ming Q(sn, u; 0) with probability 1 — €
Otherwise, u, is selected randomly

8: Execute u,, and observe c(sn, un) and sp4+1

o: Store experience [sn, un, c(Sn, un), Sn+1] in M

10: Sample random mini-batch of B, transitions from M

1: Set the target to c(sn, un) + Q(sn+1,argmin, Q(sn+1,u;0);6")

12: Perform Adam update on 6

13: end for

14: Update target network, i.e. 8’ = 0

15: end for
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Model-Free Approach

1-Step Training example (1)

1. Interact/Explore

1 cost ¢ ‘
Agent Takeaction ¢ Environment
o areacton

Observe state s ‘

U
Memory M

[s0, uo, co, s1]

[s1,u1,c1, s2]

[sn, Un, cn, Snt1]
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Model-Free Approach

1-Step Training example (2)
2. Prepare data/Train the network

Memory M

Choose best action for s;

[s0, w0, co, $1]
I\

[y .
2

[Sn7 Un, Cn, 5n+1}

Parameter 6

l

arg min,, Q(sn+1,u; )
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Model-Free Approach

1-Step Training example (2)
2. Prepare data/Train the network

Memory M

Choose best action for s;

[s0, w0, co, $1]

J N

[s1,u1,c1,82] |4+— State
s2

N F 4

[5n7 Un, Cn, 5n+1}

Parameter 6 Parameter 6'

!

arg min,, Q(sn+1, u;0)
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Model-Free Approach

1-Step Training example (2)
2. Prepare data/Train the network

Memory M

Choose best action for s;

[s0, w0, co, $1]

J N

[s1,u1,c1,82] |4+— State
s2

N F 4

Parameter 6 Parameter 6'

[5n7unacn75n+1}
arg min,, Q(sn+1, u;0) Q(Sn+1,argming Q(sn+1,u;0);0")
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Model-Free Approach

1-Step Training example (2)

2. Prepare data/Train the network

Memory M
Choose best action for sz Estimate Q-value of taking best action in s,
[s0,u0, co, 51]
[s1,u1,c1,82] |+— Statﬂ u3
S2 N
p
. 1
[Sm Un, Cn, Sn+1} Parameter & Parameter 8
arg min,, Q(sn+1, u;0) Q(Sn+1,argming Q(sn+1,u;0);0")

Agent

State
S1
p

Parameter 8
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Model-Free Approach

1-Step Training example (2)

2. Prepare data/Train the network

Memory M
Choose best action for sz Estimate Q-value of taking best action in s,
[s0,u0, co, 51]
o] e
] N
K Ve
. - "~ ,
[Sm Un, Cn, Sn+1} Parameter & Parameter 8
arg min,, Q(sn+1, u;0) Q(Sn+1,argming Q(sn+1,u;0);0")
Agent
Os) b — c1 + Q(snt1, argming, Q(sp41,u;0);0")
State\‘ Q(s1,uz)
S1 . Q(sz,u7) Target
Q(s1,U4)
Parameter 8 T
\
Prediction
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Model-Free Approach

Numerical Results - Discarded Packets

% of discarded packets
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@ RL policy is almost optimal in most of the cases.

@ DRL policy achieve optimal performance for high 4.

Mireille Sarkiss November 19, 2020 18/21



Model-Free Approach

Numerical Results - Processing Decisions

DP RL DRL
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@ Small Agq, A\e /* = local mode ~
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@ High A4, \e /4 = remote and local modes ~*

Mireille Sarkiss DRL-based offloading policies of EH devices

November 19, 2020

Model-Free Approach

Numerical Results - Processing Decisions
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Conclusion

Conclusion

@ Main objective: Propose policies for 5G mobile system with
m Offloading capabilities
m Energy harvesting

m Strict delay

@ Investigate resource scheduling and computation offloading for EH mobile device

m Optimal policy outperforms other policies by adapting the number of executed packets to
the system states
m DRL-based policy can be improved by improving training
m with larger training set
m using multistep learning algorithms
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