Anomaly detection using data depth: multivariate case

Pavlo Mozharovskyi

LTCI, Télécom Paris, Institut Polytechnique de Paris

Journée de la recherche du LTCI
Palaiseau, October 14, 2022

Contents

Introduction

What is data depth?

Simple examples

Properties of data depth for anomaly detection

Computational tractability

Conclusions

Contents

Introduction

What is data depth?

Simple examples

Properties of data depth for anomaly detection

Computational tractability

Conclusions

A real task

Regard two measurements during a test in a production process:

Given training data, polluted or not with anomalies:

- detect anomalies in the given data.

A real task

Regard two measurements during a test in a production process:

Given training data, polluted or not with anomalies:

- detect anomalies in the given data.

For new data, determine:

- Whether new observations are normal data or anomalies?

Multivariate framework

- A training data set:

$$
\boldsymbol{X}_{t r}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{d}
$$

of observations in the d-dimensional Euclidean space.

- Typical example: a table from a data base, with lines being observations (=individuals, items,...).
- Construct a decision function:

$$
\mathbb{R}^{d} \rightarrow\{0,1\}: x \mapsto g(x),
$$

which attributes to any (possible) $\boldsymbol{x} \in \mathbb{R}^{d}$ a label whether it is an anomaly (e.g., 1) or a normal observation (e.g., 0).

- It is more useful to provide an ordering on \mathbb{R}^{d} :

$$
\mathbb{R}^{d} \rightarrow \mathbb{R}: \boldsymbol{x} \mapsto g(\boldsymbol{x}),
$$

such that abnormal observations obtain differing anomaly score.

Teaser

Same data set with two measurements:

Given training data, polluted or not with anomalies:

- detect anomalies in the given data.

Teaser

Same data set with two measurements:

For new data, employ:

- Anomaly detection rule using bounding box:
$g_{\text {box }}\left(\boldsymbol{x} \mid \boldsymbol{X}_{t r}\right)= \begin{cases}\operatorname{anoamly}(=1), & \text { if } \boldsymbol{x} \notin \bigcap_{j=1, \ldots, d}\left(\underline{H}_{j, l_{j}} \cap \bar{H}_{j, u_{j}}\right), \\ \text { normal }(=0), & \text { otherwise. }\end{cases}$

Teaser

Same data set with two measurements:

For new data, employ:

- Anomaly detection rule using Mahalanobis depth:

$$
g_{\mathrm{Mah}}\left(\boldsymbol{x} \mid \boldsymbol{X}_{t r}\right)= \begin{cases}\text { anomaly }, & \text { if } D^{\mathrm{Mah}}\left(\boldsymbol{x} \mid \boldsymbol{X}_{t r}\right)<t_{\mathrm{Mah}, \boldsymbol{X}_{t r}} \\ \text { normal }, & \text { otherwise }\end{cases}
$$

Teaser

Same data set with two measurements, but less observations:

Given training data, polluted or not with anomalies:

- detect anomalies in the given data.

Teaser

Same data set with two measurements, but less observations:

Given training data, polluted or not with anomalies:

- detect anomalies in the given data.

For new data, employ:

- Anomaly detection rule using Mahalanobis depth.

Teaser

Same data set with two measurements, but less observations:

For new data, employ:

- Anomaly detection rule using projection depth:

$$
g_{\text {prj }}\left(\boldsymbol{x} \mid \boldsymbol{X}_{t r}\right)= \begin{cases}\text { anomaly, } & \text { if } D^{\text {prj }}\left(\boldsymbol{x} \mid \boldsymbol{X}_{t r}\right)<t_{\text {prj }, \boldsymbol{X}_{t r}} \\ \text { normal }, & \text { otherwise }\end{cases}
$$

Teaser

Now back to big data set with two measurements:

For new data, employ:

- Anomaly detection rule using projection depth:

$$
g_{\text {prj }}\left(\boldsymbol{x} \mid \boldsymbol{X}_{t r}\right)= \begin{cases}\text { anomaly, } & \text { if } D^{\text {prj }}\left(\boldsymbol{x} \mid \boldsymbol{X}_{t r}\right)<t_{\text {prj }, \boldsymbol{X}_{t r}} \\ \text { normal }, & \text { otherwise }\end{cases}
$$

Contents

Introduction

What is data depth?

Simple examples

Properties of data depth for anomaly detection

Computational tractability

Conclusions

Data depth

Babies with low birth weight

Data depth

Babies with low birth weight

Statistical data depth

A data depth measures how close a given point is located to the center of a distribution. For $\boldsymbol{x} \in \mathbb{R}^{p}$ and a p-variate random vector X distributed as $P \in \mathcal{P}$, a data depth is a function

$$
D: \mathbb{R}^{p} \times \mathcal{P} \rightarrow[0,1],(\boldsymbol{x}, P) \mapsto D(x \mid P)
$$

that is:
D1 translation invariant: $D(\boldsymbol{x}+b \mid X+b)=D(\boldsymbol{x} \mid X)$ for any $b \in \mathbb{R}^{p}$;
D2 linear invariant: $D(A \boldsymbol{x} \mid A X)=D(\boldsymbol{x} \mid X)$ for any $p \times p$ non-singular matrix A;
D3 vanishing at infinity: $\lim _{\|\boldsymbol{x}\| \rightarrow \infty} D(\boldsymbol{x} \mid X)=0$;
D4 monotone on rays: for any $\boldsymbol{x}^{*} \in \operatorname{argmax}_{\boldsymbol{x} \in \mathbb{R}^{p}} D(\boldsymbol{x} \mid X)$, any $\boldsymbol{x} \in \mathbb{R}^{p}$, and any $0 \leq \alpha \leq 1$ it holds:
$D(\boldsymbol{x} \mid X) \leq D\left(\boldsymbol{x}^{*}+\alpha\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right) \mid X\right) ;$
D5 upper semicontinuous in \boldsymbol{x} : the upper-level sets $D_{\alpha}(X)=\left\{\boldsymbol{x} \in \mathbb{R}^{p}: D(\boldsymbol{x} \mid X) \geq \alpha\right\}$ are closed for all α.

Halfspace (=Tukey, location) depth

Tukey (1975) - "Mathematics and the picturing of data"
Halfspace depth of $\boldsymbol{x} \in \mathbb{R}^{p}$ w.r.t. a d-variate random vector X distributed as P is defined as the smallest probability mass of a closed halfspace containing \mathbf{x} :

$$
D^{h}(x \mid X)=\inf \{P(H): H \text { is a closed halfspace, } x \in H\}
$$

and w.r.t. a data set $\boldsymbol{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{p}$:

$$
D^{h(n)}(\boldsymbol{x} \mid \boldsymbol{X})=\frac{1}{n} \min _{\boldsymbol{u} \in \mathbb{S}^{p-1}} \sharp\left\{i: \boldsymbol{u}^{\prime} \boldsymbol{x}_{i} \geq \boldsymbol{u}^{\prime} \boldsymbol{x}\right\} .
$$

Halfspace depth

- satisfies all the above postulates,
- is purely non-parametric and robust,
- has direct connection to quantiles and many applications.

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

114 / 161

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Halfspace-trimmed regions

Halfspace depth defines a family of (depth-)trimmed (central) regions $D_{\tau}^{h}(X)$, the upper-level sets of the depth function:

$$
D_{\tau}^{h}(X)=\left\{x \in \mathbb{R}^{p}: D^{h}(\boldsymbol{x} \mid X) \geq \tau\right\} .
$$

Properties:

Depth:

- Affine invariant;
- Vanishing at infinity;
- Monotone w.r.t. deepest point;
- Upper-semicontinuous;
- Quasiconcave.

Regions:

Affine equivariant;
Bounded;
Nested;
Closed;
Convex.

Halfspace (=Tukey, location) depth-trimmed regions

Babies with low birth weight

。

Halfspace (=Tukey, location) depth-trimmed regions

Babies with low birth weight

Halfspace (=Tukey, location) data depth

Halfspace (=Tukey, location) depth region

Halfspace (=Tukey, location) depth region: $\tau=2 / 161$

Halfspace (=Tukey, location) depth region: $\tau=5 / 161$

Halfspace (=Tukey, location) depth region: $\tau=9 / 161$

Halfspace (=Tukey, location) depth region: $\tau=13 / 161$

Halfspace (=Tukey, location) depth region: $\tau=17 / 161$

Halfspace (=Tukey, location) depth region: $\tau=25 / 161$

Halfspace (=Tukey, location) depth region: $\tau=33 / 161$

Halfspace (=Tukey, location) depth region: $\tau=41 / 161$

Halfspace (=Tukey, location) depth region: $\tau=49 / 161$

Halfspace (=Tukey, location) depth region: $\tau=57 / 161$

Halfspace (=Tukey, location) depth region: $\tau=65 / 161$

Halfspace (=Tukey, location) depth region: $\tau=68 / 161$

Further depth notions

- Mahalanobis depth (Mahalanobis, 1936)
- Convex hull peeling depth (Barnett, 1976; Eddy, 1981)
- Projection depth (Stahel, 1981; Donoho, 1982)
- Simplicial volume depth (Oja, 1983)
- Simplicial depth (Liu, 1990)
- Majority depth (Singh, 1991)
- Zonoid depth (Koshevoy and Mosler, 1997)
- \mathbb{Q}_{p}-depth (Zuo and Serfling, 2000)
- Spatial depth (Serfling, 2002)
- Expected convex hull depth (Cascos, 2007)
- Geometrical depth (Dyckerhoff and Mosler, 2011)
- Lens depth (Liu and Modarres, 2011)

Contents

Introduction

What is data depth?

Simple examples

Properties of data depth for anomaly detection

Computational tractability

Conclusions

Projection vs. halfspace depth

- Normal data (90 obs.): $\mathcal{N}\left((1,1)^{\top},\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)\right)$.
- Anomalies (10 obs.): $\mathcal{N}\left((3.181,-0.222)^{\top},\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right) / 36\right)$.

Projection depth

Simplicial volume depth

Projection vs. halfspace depth

- Normal data (90 obs.): $\mathcal{N}\left((1,1)^{\top},\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)\right)$.
- Anomalies (10 obs.): $\mathcal{N}\left((3.181,-0.222)^{\top},\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right) / 36\right)$.
- Anomalies (25 obs.): masking anomalies.

Projection vs. halfspace depth

- Normal data (90 obs.): $\mathcal{N}\left((1,1)^{\top},\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)\right)$.
- Anomalies (10 obs.): $\mathcal{N}\left((3.181,-0.222)^{\top},\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right) / 36\right)$.
- Anomalies (25 obs.): masking anomalies.

Contents

Introduction

What is data depth?

Simple examples

Properties of data depth for anomaly detection

Computational tractability

Illustration of properties

Properties of data depth:

- Robustness, on comparison with:
- Auto-encoder.
- Extrapolation abilities, on comparison with:
- Local outlier factor (LOF).
- One-class support vector machine (OC-SVM).
- Isolation forest (IF).
- Explainability of anomalies.

Autoencoder vs. depth

- Normal data: $\mathcal{N}\left(\boldsymbol{i}_{d}, \boldsymbol{I}_{d \times d}\right)$.
- Anomalies: ellicpical Cauchy distribution.

$$
d=20
$$

Quality measure: Portion of anomalies if we detect all of them. Autoencoders:

- For $d=10$: neuronal layers $10-5-2-5-10$.
- For $d=20$: neuronal layers 20-10-5-10-20.

Local outlier factor

- Training data: polluted with anomalies.
- Test data: same + new anomalies.

One-class support vector machine

- Training data: polluted with anomalies.
- Test data: same + new anomalies.

Isolation forest

- Training data: polluted with anomalies.
- Test data: same + new anomalies.

Data depth (projection depth notion)

- Training data: polluted with anomalies.
- Test data: same + new anomalies.

Explainability

- Let us take the previous example.

Explainability

- Optimizing direction: variables contribution, e.g., $(0.863,-0.505)^{\top}$.
- Directions' plot: compare abnormalities.
- Angles' heatmap: Allows to detect clustered anomalies.

Contents

Introduction

What is data depth?

Simple examples

Properties of data depth for anomaly detection

Computational tractability

Numerical approximation: number of directions

Employing approximating algorithms for data depth:
Dyckerhoff, Mozharovskyi, Nagy (2021).

- Normal data (950 obs.): $\mathcal{N}\left(\mathbf{0}_{d}\right.$, Toeplitz $\left._{d \times d}\right)$.
- Anomalies (50 obs.): $\mathcal{N}\left(\mathbf{0}_{d}+1.25 \cdot \lambda \cdot \min \mathrm{PC}, \boldsymbol{I}_{d \times \boldsymbol{d}}\right)$.

Statistical approximation: sub-sampling

Employing approximating algorithms for data depth:
Dyckerhoff, Mozharovskyi, Nagy (2021).

- Normal data (950 obs.): $\mathcal{N}\left(\mathbf{0}_{d}\right.$, Toeplitz $\left._{d \times d}\right)$.
- Anomalies (50 obs.): $\mathcal{N}\left(\mathbf{0}_{d}+1.25 \cdot \lambda \cdot \min \mathrm{PC}, \boldsymbol{I}_{d \times d}\right)$.

Contents

Introduction

What is data depth?

Simple examples

Properties of data depth for anomaly detection

Computational tractability

Conclusions

Thank you for your attention! Questions?

- Data depth has undergone substantial theoretical development during recent 30 years and possesses attractive properties, e.g., robustness, affine invariance, etc.
- Recently, efficient algorithms (both exact and approximate) have been developed for computation of numerous depths.
- Data depth can be used as a powerful tool for anomaly detection.
- When applying data depth for anomaly detection, several aspects should be taken into account, considered in this presentation.
- Disclaimer: The presented examples were designed to illustrate advantages of depth-based anomaly detection, their generalization can be limited.

Computational taxonomy

	Exponential time	Polynomial time
	convex hull peeling depth majority depth expected convex hull depth geometrical depth halfspace depth projection depth simplicial depth	zonoid depth Mahalanobis depth
	simplicial volume depth	

* : Italics indicate robust depth notions.

Mahalanobis depth (Mahalanobis, 1936)

- $X \sim \mathrm{~N}\left(\mu_{X}, \Sigma_{X}\right)$

Mahalanobis depth (Mahalanobis, 1936)

Mahalanobis depth (Mahalanobis, 1936)

- $X \sim \mathrm{~N}\left(\mu_{X}, \Sigma_{X}\right)$
- $d(\boldsymbol{x} \mid X)=\left\|\boldsymbol{x}-\mu_{X}\right\|$
- $d_{\text {Mah }}^{2}(\boldsymbol{x} \mid X)=$ $\left(\boldsymbol{x}-\mu_{X}\right)^{\top} \Sigma_{X}^{-1}\left(\boldsymbol{x}-\mu_{X}\right)$
$-D^{\text {Mah }}(\boldsymbol{x} \mid X)=\frac{1}{1+d_{\text {Mah }}^{2}(x \mid X)}$

Projection depth (Zuo, Serfling, 2000)

- A measure of outlyingness of
 x w.r.t. X :

$$
\begin{aligned}
& O_{P r j}(\boldsymbol{x} \mid X)= \\
& \sup _{\mathbf{u} \in S^{d-1}} \frac{\left|\mathbf{u}^{\top} x-m_{X}\left(\mathbf{u}^{\prime} x\right)\right|}{\sigma_{X}\left(\mathbf{u}^{\top} x\right)},
\end{aligned}
$$

m_{X} and σ_{X} are univariate location and scatter measures.

- $m_{X}=$ median and $\sigma_{X}=\mathrm{MAD}$ (median absolute deviation).
- $D^{\text {prj }}(\boldsymbol{x} \mid X)=\frac{1}{1+O_{P i j}(x \mid X)}$.

Projection depth (Zuo, Serfling, 2000)

- A measure of outlyingness of x w.r.t. X :
$O_{P r j}(x \mid X)=$
$\sup _{\mathbf{u} \in S^{d-1}} \frac{\left|\mathbf{u}^{\top} x-m_{X}\left(\mathbf{u}^{\prime} x\right)\right|}{\sigma_{X}\left(\mathbf{u}^{\top} x\right)}$,
m_{X} and σ_{X} are univariate location and scatter measures.
- $m_{X}=$ median and $\sigma_{X}=\mathrm{MAD}$ (median absolute deviation).
$-D^{\text {prj }}(\boldsymbol{x} \mid X)=\frac{1}{1+O_{P i j}(x \mid X)}$.

